Abstract
Amorphous $MgNi_{1-x}Ti_x$ alloys with the composition of x=0.02, 0.03, 0.05 and 0.07 were synthesized by mechanical alloying. The synthesized alloys were investigated by electrochemical test, XRD and SEM. As increasing Ti concentration, the initial discharge capacity was raised more than that of nanocrystalline Mg-Ni 289 mAh/g, but the electrodes were degraded faster. Comparing to other synthesized alloys, $MgNi_{0.95}Ti_{0.05}$ alloy showed the highest initial discharged capacity 474 mAh/g and maintained $54\%$ of the initial capacity after 10 cycles.