Stabilization of Acromioclavicular Joint Seperation

전남대학교 의과대학 정형외과학교실

문 은 선

1. Treatment Methods according to Injury Types

- 1) Problems after Acromioclavicular(AC) injury
 - AC arthrosis
 - Deformity (cosmesis)
 - Instability: Pain, Limitation of motion,

2) Problems after AC injury in operation cases

- Timing, Age, Activity
- AC: mode of fixation
- CC(coracoclavicular): Repair or Reconstruction
- Lateral end resection

3) AC Arthrosis

- The result of old AC sprain or D/L or be associated with chronic overhead overuse injury
- Younger patients who involved in overhead sports (tennis, swimming, or pitching etc.)
- Conservative treatment
 - : Rest, Icing, NSAID, Physiotherapy, Steroid injection into AC joint
- Indication of Surgical treatment
- : Failure of conservative treatment
- Methods of surgical treatment
 - : Excision of distal clavicle (Mumford procedure) Open or A/S

4) Type I, II injury

- No role for surgical treatment

5) Type III injury

- Many treatments of options have been proposed
- Controversial about Surgical or Nonsurgical Treatments

- Currently, most advocate conservative treatments
- Nonoperative treatment particularly in patients who participate in contact sports (Rockwood)
- Nonoperative treatment in Young athlete regularly subject to violent and repeated injuries to the joint, such as a rugby player (Clavert et al. Tech Shoulder Elbow Surg, 2005)
- However, some authors recommended surgical treatments for
 - a. High laborer in dominant arms
 - b. Throwing athelets in dominant arms (esp. Baseball pitcher)
 - c. chronic injuries in which nonsurgical treatment fails

6) Type IV, V, VI injury

- Most Surgeons agree on Surgical intervention because of the severe displacement of the clavicle (soft tissue injury)

2. Methods of Operative Treatments

- : Choice of specific procedure is based on multiple factors
 - Surgeon's preference and expertise
 - Available equipment and operative personnel
- Patient's pathology and overall health
- Patient's reliability and anticipated activity level
- : Choice of any specific surgery must be individualized for each patient

1) Primary AC Stabilization

- : Phemister technique (*Phemister*, *IBIS*, 1941)
- : Nevaiser technique (Nevaiser, Bull Hosp Jt Dis Orthop Int, 1951) etc.
- (1) Transarticular fixation
 - Pin(Smooth or Threaded), K-wire, Steinmann pin
 - Plate system (Wolter plate)
- (2) Advantages
 - Relatively easy technique
 - Firm fixation power
- (3) Disadvantages
 - Hardware problems
 - : Need of 2nd operation
 - : Breakage & Migration
 - : Voluminous
 - Joint articular damage
 - Technically demand

2) Secondary CC Stabilization

- Most popular type in USA (Thomas et al. Current Opinion in Orthop, 2003)
- No surgical trauma to AC joint

(1) Types of fixation

- A. Rigid form of fixation
 - : Stronger fixation & Minimal soft tissue dissection than Suture fixation
 - a. Screw
 - Bosworth technique (Bosworth, Surg Gynecol Obstet, 1941)
 - Modified Bosworth technique (Kennedy etc., JBJS Br, 1954)
 - : Bosworth technique + CC ligament repair
 - Percutaneous cannulated screw fixation (Tsou, Clin Orthop, 1989)
 - b. Wire
 - 2 Coracoclavicular loops of wire (Bearden, J Sports Med, 1973)
 - c. C-hook (Ryhanen et al, J Shoulder Elbow Surg, 2003)

B. Non-rigid form of fixation

- : General guideline for placement of suture loop or suture anchor
- at the absolute base of the coracoid process
- the suture should pass through a drill holl at the junction

between ant, and middle third of the clavicle

- a. Suture Loop
 - : A cerclage around coracoid & clavicle
 - Suture band (Dacron or synthetic band)
 - : currently most surgeon prefer suture band that are between 5~10 mm thickness (Kwon et al. Clin Sports Med, 2003)
 - Absorbable suture (PDS suture etc.)
 - Nonabsorbable suture (Ethibond suture etc.)
 - Semitendinosis allograft (Wolf et al. Arthroscopy, 2001)
 - Disadvantages
 - : Large exposure & technically demanding
 - : Difficult to obtain a proper reduction of AC joint
 - : Possible neurovascular injury
 - : Subsequent failure of sutures
 - : Erosion of the suture material through the bone

b. Suture Anchor

- Advantages
 - : Can avoid neurovascular injury

- : Accurate placement of suture at coracoid base
- Disadvantages
- : Large exposure & Technically demanding

C. Biomechanics

- a. Biomechnics of the CC ligament complex & augmentations used in its repair and reconstruction (*Motamedi et al, Am J Sports Med., 2000*)
 - : No significant difference in the mean failure load between intact CC ligament complex & augmentation performed with braided PDS or braided polyethylene placed through or around the clavicle
- b. Structural properties of the intact and the reconstructed CC ligament complex (Harris et al, Am J Sports Med., 2000)
 - : The intact CC ligament failed by avulsion or midsubstance tear at 500 N, with a stiffness of 103 N/mm and elongation to failure of 7.7 mm
 - : CC slings and suture anchors provided strength similar to that of the CC ligament, but with significantly greater deformations.
 - : Screw fixation resulted in complarable stiffness and superior strength to the CC ligament, but only if bicortical purchase was obtained
 - : CA ligament transfers were the weakest and least stiff, and augmentation with another form of CC fixation is recommended
- D. Methods of suture fixation between distal clavicle & coracoid process
 - : OR vs A/S assisted method

3) Clavicle lateral end resection

- (1) Mumford technique (Mumford, JBJS-Am, 1941)
 - Open or A/S
- (2) Rockwood technique (Rockwood et al., Orthop Trans, 1988)
 - excise the distal clavicle
 - transfer the coracoacromial ligament to clavicle
 - reapproximation of coracoclavicular ligament
 - temporary coracoclavicular lag screw fixation
- (3) Weaver-Dunn technique (Weaver and Dunn, JBJS-Am, 1972)
 - excise the distal 2 cm of the clavicle
 - transfer the coracoacromial ligament to clavicle
 - cerclage of coracoid and clavicle
 - repair of coracoclavicular ligament (if possible)

(4) Modified Weaver-Dunn technique

4) Dynamic Stabilization (Dynamic muscle transfer)

- (1) Bailey & O'Conner (JBJS-Am, 1965)
 - Transfer of the coracoid process with the coracobrachialis and the short head of the biceps to the clavicle
- (2) Dewar & Barrington (JBJS, 1965)
 - Tip of the coracoid process with its attachment to the short head of the biceps and coracobrachialis is mobilized
 - : Fixed to the undersurface of the clavicle
- (3) Berson et al. (Clin Orthop, 1978)
- (4) Brunelli et al. (Brunelli, International Orthop, 1988)
 - : Short head of biceps tendon is isolated and transferred to the distal clavicle immediately above the coracoid process
 - Complication
 - : musculocutaneous nerve injury
 - : nonunion or delayed union of the transfer
 - : persistent AC joint instability
 - : high rate of continued shoulder girdle discomfort, esp. in old patients
 - Dynamic stabilization without any mechanical augmentation, may allow excessive motion at the AC joint
 - can lead to symptomatic joint instability and arthrosis
 - has not been used as a primary surgical option for a majoirty of the cases

REFERENCES

- 1. Clavert P, Moulinoux P, Kempf JF.: Technique of stabilization in acromioclavicular joint dislocation. Techniques in Shoulder and Elbow Surgery 2005;6(1):1-7.
- 2. Faraj AA, Ketzer B: The use of a hook plate in the management of acromioclavicular injuries: report of ten cases. Acta ortho Belgica 2001;67:448-451.
- 3. Gladstone JN, Rosen AL.: Disorders of the acromioclavicular joint Current Opinion in Orthopedics 1999;10:316-321.
- 4. Goble EM, Somers WK, Clark R, et al.: The development of suture anchors for use in soft tissue fixation to bone. Am J Sports Med 1994;22:236-239.
- 5. Guy DK, Wirth MA, Griffin JL, et al: Reconstruction of chronic and complete dislocation of the acromioclavicular joint. Clin Orthop 1998;347:138-149.
- 6. Haris RI, Wallace AL, Harper GD, et al.: Structural properties of the intact and the reconstructed coracoclavicular ligament complex. Am J Sports Med 2000; 28:103-108.

- 7. Harris TG, Lynch SA.: Acromioclavicular joint separation: update, diagnosis, classification, and treatment Current Opinion in Orthopaedics 2003;14:255-261.
- 8. Hessmann M, Gotzen L, Gehling H: Acromioclavicular reconstruction augmented with polydioxanonsulphate bands. Surgical technique and results. Am J Sports Med 1995;23:552-556.
- 9. Meister K: Injuries to the shoulder in the throwing athlete. Am J Sports Med 2000;28:265-274.
- 10. McFarland EG, Blivin SJ, Doehring CB, et al: Treatment of grade III acromioclavicular separations in professional throwing atheletes: results of a survey. Am J Orthop (Chatham, NJ), 1997;26:771-774.
- 11. Morrison DS, Lemos MJ.: Acromioclavicular separation: reconstruction using synthetic loop augmentation. Am J Sports Med 1995;23:105-110.
- 12. Ong BC, Sekiya JK, Rodosky MW.: Shoulder injuries in the athlete Current Opinion in Rheumatology 2002;14:150-159.
- 13. Rockwood Jr CA, Williams GR, Young DC: Disorders of the AC joint. In The Shoulder 2nd Ed. Edited by Rockwood and Matsen. Philadelphia; WB Saunders Co. 1990;483-543.
- 14. Ryhanen J, Niemela E, Kaarela O, Raatikainen T.: Stabilization of acute, complete acromioclavicular joint dislocations with a new C hook implant Journal of Shoulder and Elbow Surgery 2003;442-445.
- 15. Sim E, Schwarz N, Hocker K, et al.: Repair of complete acromioclavicular separations using the acromioclavicular hookplate. Clin Orthop 1995;314:134-142
- 16. Van der wall H, Mclaughin A, Warrick B, et al: Scintigraphic patterns of injury in amateur weightlifters. Clin Nucl Med 1999;24:915-925.
- 17. Weinstein DM, McCann PD, McIlveen SJ, et al: Surgical treatment of complete acromioclavicular dislocation. Am J Sports Med 1995;23:324-331.
- 18. Wolf EM, Pennington WT.: Arthroscopic reconstruction for acromioclavicular joint dislocation Arthroscopy 2001;17:558-563.
- 19. Wolter D, Eggers C.: Reposition und Fixation der acromioclavicularen Luxation mit Hilfe einer Hakenplatte. Unfallheikunde 1984;170:80-86.