Anatomy and Biomechanics of the Acromioclavicular Joint

가천의과대학교 길병원 정형외과학교실

김영규

Introduction

- · Injuries and degenerative pathology prequently involve the AC joint.
- · Understanding of Anatomy and mechanics of the AC joint is mandatory for treating joint pathology.

Acromioclavicular Joint

Fig. 1.

- · Diarthrodial joint
- · Fibrocartilaginous disk
 - → Varying size and shape
 - → Complete disk: less than 10% (DePalma, Clin Orthop, 59)
 - → Degenerative change: with age

Joint Morphology

· Variations in the inclination of AC joint

Fig. 2. (DePalma, Surg of Shoulder, 73)

Fig. 3. (Urist, JBJS, 43)

- → No correlation between inclination and AC arthritis (Petrone & Nirschl, AJSM, 78)
- → More vertical, more susceptible to osteolysis
 : higher force was concentrate at the distal clavicle.
 (Pitchford & Cahill, Oper Tech Sports Med, 97)
- · Joint size
 - → Length
 - Vertical: 9 mm
 - AP:19 mm
 - \rightarrow Width
 - Normal: 1-3 mm
 - Decrease with age
 - Joint space greater than 5(F)-7(M) mm
 - : pathologic finding (RA, etc)

Ligamentous Anatomy

- · AC joint capsule and ligament
 - → Capsule: thin
 - → Ligament: heavy
 - → 22.9 mm in length (Klassen, Oper Tech Sports Med, 97)
- · Superior AC ligament

Fig. 4.

- → Thicker than inferior ligament: 2?5.5 mm
- → Insert into clavicle and musculotendinous aponeurosis of the deltotrapezial fascia
- → More defined insertion into distal clavicle (Salter, AJSM, 87)
- · Distances of superior AC ligament (Renfree, JSES, 03)

Fig. 5.

a, distance from articular surface of distal clavicle to lat, insertion point of sup. AC lig.; b, distance from articular surface of distal clavicle to med, insertion point of sup. AC lig.; c, distance from articular surface of acromion to med, insertion point of sup. AC lig.; d, distance from articular surface of acromion to lat, insertion point of sup. AC lig.

Insertion point	Mean distance	e (mm) (range)
	Men	Women
a	1.4±0.33 (0.8~1.8)	0.7±0.63 (0~2.0)
b	$5.5 \pm 1.7 (2.6 - 7.6)$	3.6 ± 0.78 (2.3~5.2)
c	$1.1\pm0.37~(0.6\sim1.79)$	2.0 ± 0.5 (1.0~2.9)
đ	$8.1 \pm 0.75 (7.4 \sim 9.84)$	$4.7 \pm 0.98 (3.0 \sim 6.7)$

- · Coracoclavicular ligament
 - → Conoid (posteromedial) + trapezoid (anterolateral)
 - → Trapezoid

- 0.8~2.5 cm in length and width (Salter, AJSM, 87)
- Mean 15.3 mm in length (Harris, JSES, 01)
- \rightarrow Conoid
 - 0.7~2.5 cm in length, 0.4?0.95 cm in width (Salter, AJSM, 87)
- → Distances of trapezoid and conoid ligament (Renfree, JSES, 03)

Fig. 6.

Fig. 7. TL and CL insertions stained with methyl-lene blue after digestion in bleach.

Insertion point	Distance of inse	ertion (mm)
	Men	Women
b-c	16.7±2.4	16.1±1.4
b-d	28.2 ± 5.7	26.6 ± 5.2
b-e	33.5 ± 4.4	28.9 ± 2.5
b-f	49.7 ± 5.4	44.4 ± 4.4

→ Geometric parameter (Harris, JSES, 01)

Dimension (mm)	Mean	
1. Medial conoid length	19.4	
2. Anterior trapezoid le	19.3	
3. Conoid clavicular w	20.6	
4. Conoid coracoid wid	10.6	
5. Trapezoid clavicular	21.7	
6. Trapezoid coracoid	14.0	
7. Conoid thickness	a. Superior	8.6
	b. Middle	5.9
	c. Inferior	4.4
8. Trapezoid thickness	a. Superior	16.0
•	b. Middle	5.5
	c. Inferior	4.8
9. Distal clavicle		15.3

Fig. 8.

- Conoid ligament
 - · Clavicular attachment: conoid tubercle
 - · Conoid insertion: posterior-most area of coracoid dorsum & post, coracoid precipice (conoid apophysis)
 - · Clavicular insertion is twice as wide and thick as its coracoid insertion (inverted cone shape)
- Trapezoid ligament
 - · Clavicular attachment: trapezoid ridge
 - · Coracoid insertion: post, half of coracoid dorsum
- Coracoclavicular bursa
 - : extended superiorly from the coracoid
- 3 anatomic variants of conoid lig. based on inf. attachment site

Fig. 9.

- Type I: common type
- Type II: 2 point attachment
 - · Dorsum and post, coracoid
 - · Sup, border of scapula via sup, transverse scapular lig.
- Type III: Type II with accessory conoid lat, fascicle
 - · Arising inf-medially from lat, border of scapular notch
 - · Coursing sup-laterally
 - · Inserting lat, border of trapezoid insertion
- · Clinical points
- → Resection of distal clavicle
 - · Less than 11 mm: not violate trapezoid ligament

- · Less than 24 mm: not violate conoid ligament
- · Greater than 5.2 mm in women and 7.6 mm in men
 - : disrupt sup. AC ligament
- · Safety margin to preserve the CC ligament
 - : 15 mm (Harris, JSES, 01)
- → Resection of medial acromion
 - · Greater than 4.7 mm in women and 8 mm in men
 - : disrupt sup. AC ligament
- → Resection of distal clavicle by an arthroscopic approach
 - · As little as 2.6 mm in male and 2.3 mm in female
 - : can violate sup. AC ligament

Stabilizer of AC Joint

- · Capsular ligament: AC ligament
 - → Superior ligament
- · Most robust among AC ligament
- · Reinforced by fascial attachment of deltoid and trapezius
- · Extracapsular ligament: coracoclavicular ligament
- · Dynamic stabilizer: deltoid and trapezius

Mechanical Properties of Supporting Ligaments

- · Strength to failure
 - : AC ligament complex > conoid ligament > trapezoid ligament
- · Site of breakage
 - : midsubstance > origin
- · Involvement of ligament
 - → Isolated rupture from the insertion of origin: unusual
 - → Mixed rupture with midsubstance: usual

Mechanics of AC Ligament

- · Contribute for many direction of displacement and rotation of clavicle
- · Greater amount to constraint at small degrees of displacement
 - : correspond to "physiologic load" in ROM of daily living
- · According to amount of force
 - → Small displacement in ant. & sup. direction

- : AC ligament resist 50% and 65% of force
- → Large displacement
- : conoid ligament contribute 70% and 60% (Fukuda, JBJS, 86)
- · Act as a primary constraint for post, displacement & post, axial rotation of clavicle
- · Debski et al (JBJS, 01)
 - → If transect the AC joint
 - : 100% displacement in both ant. & post. directions
 - → Inf. AC ligament
 - : 50% of restraint in all direction
- · Klimkiewicz et al (JSES, 99)
 - → Sup. AC ligament
 - : 56% of the resistance to post, direction force
- · Debski et al (JBJS, 01)
 - → If AC joint is disrupted, such as distal clavicle excision
- · Increased forces in CC ligament
- · Unable to control ant-post, translation or rotation of distal clavicle

Mechanics of Coracoclavicular Ligament

- · Conoid ligament
- → Primary role in constraining ant, & sup, rotation & displacement of distal clavicle
- → With large displacement, its force increases

· Sup, displacement: 60% of total

· Sup. rotation: 82% of total

· Ant. displacement: 70% of total

· Ant. rotation: 72% of total (Fukuda, JBJS, 86)

Contributions (%) of individual ligaments to constraint of the AC joint

	Small displacement*			Large displacement +		
Displacement	Conoid	Trapezoid	AC	Conoid	Trapezoid	AC
Ant. translation	35	16	49	70	18	12
Post. translation	7	4	89	9	1	90
Ant. rotation	55	20	25	72	20	8
Post. rotation	55	16	29	47	38	15
Sup. rotation	40	20	40	82	5	13
Sup. translation	23	9	68	62	15	22
Axial translation (distraction)	35	0	65	8	1	91
Axial translation (compression)	40	47	13	9	75	16

^{*}Average corresponding constraint forces are ten N. & torques are 0.6 Nm.

⁺ Average corresponding constraint forces are ninety N. & torques are 4.5 Nm.

- → Significant sup. displacement of distal clavicle
 - : imply disruption of conoid ligament
 - · Trapezoid ligament
- → Contribute the least to sup. & horizontal displacement
- → Most of constraint (75%) against axial compression of clavicle toward the acromion at higher displacement

Fig. 10.

- · Analogous to ACL of the knee (Fukuda, JBJS, 86)
 - → Length of conoid ligament
 - Increase moderately with ant, rotation
 - Lengthen with sup, rotation
 - → Length of trapezoid ligament: similarly
- · Changing force after transection of AC lig.
 - → Under post, load
 - Force in TL: increase 66% (50% greater than in CL)
 - Under sup, load
 - → Force in CL: greatest (50% greater than in AC lig.)
 - → Force in either TL or CL in response to higher load: not change
 - Under ant, load
 - → Force in conoid lig
 - : increase greater than 200% (compared with 100% increase in TL)

Deltoid and Trapezius

- · Fiber of deltoid and trapezius blend with fiber of sup. AC lig.
- · Dynamic stabilizer
 - → Deltoid
 - : dynamic suspensory support
 - → Upper portion of trapezius
 - : fascial attachment over dorsum of clavicle, extending to AC joint
- · Why symptoms are often absent clinically after even type III injuries?
 - → Forced direction of deltoid
 - 63° superiorly in resting position
 - 4° superiorly at 60° abd. (Perry, Biomech of Shoulder,88)
 - → A portion of ant, deltoid insert on clavicle medial to AC joint
 - : these force vector make it suited to prevent excessive sup. migration of distal clavicle (Wulker, Appl Biomech, 98)
- · Clinical point
 - → Imbrication of deltotrapezial fascia over the joint
 - : to reinforce the stability AC joint reconstruction

Joint Biomechanics

- · Motion (Rockwood, The Shoulder, 98)
 - → Rotation through axis of clavicle: 45°
 - → Among 45°, only 5-8° actually occur through AC joint.
- · Controversies about motion of AC joint
 - → Minimal axial rotation of clavicle at AC joint
 - Required for normal shoulder elevation.
 - Any fusion of AC joint violate mechanical problem. (Klassen, Oper Tech Sports Med, 97)
 - → Lost shoulder motion after fusion or fix the clavicle to scapula: little effect (Rockwood, The Shoulder, 98)
 - → High stress exist in AC joint.
 - : as illustrated by implant failure and migration, loss of reduction (Sim, Clin Orthop, 95 & Weinstein, AJSM, 95)

- · Clinical considerations
 - → High compressive force
 - Occur from musculature driving distal clavicle into acromion during exercise
 - Osteolysis in weightlifter (Pitchford, Oper Tech Sports Med, 97 & Slawski, AJSM, 94)
 - → Friction force is minimal.
 - : as the clavicle grides smoothly over the acromion (Debski, JBJS, 01)
 - → High degree of rotation and shear force
 - : another risk factor for degeneration of AC joint (Fung, JSES, 01)