Lime based stabilization/solidification (S/S) of arsenic contaminated soils

  • Moon, Deok-Hyun (W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Castle Point on Hudson)
  • 발행 : 2004.12.20

초록

Lime based stabilization/solidification (S/S) can be an effective remediation alternative for the immobilization of arsenic (As) in contaminated soils and sludges. However, the exact immobilization mechanism has not been well established, Based on previous research, As immobilization could be attributed to sorption and/or inclusion in pozzolanic reaction products and/or the formation of calcium-arsenic (Ca-As) precipitates. In this study, suspensions of lime-As were studied in an attempt to elucidate the controlling mechanism of As immobilization in lime treated soils. Aqueous lime-As suspensions (slurries) with varying Ca/As molar ratios (1:1, 1.5:1, 2:1, 2.5:1 and 4:1) were prepared and soluble As concentrations were determined. X-ray diffraction (XRD) analyses were used to establish the resulting mineralogy of crystalline precipitate formation. Depending on the redox state of the As source, different As precipitates were identified. When As (III) was used, the main precipitate formation was Ca-As-O. With As(V) as the source, Ca4(OH)2(AsO4)2${\cdot}$4H2O formed at Ca/As molar ratios greater than 1:1. A significant increase in As (III) immobilization was observed at Ca/As molar ratios greater than 1:1. Similarly, a substantial increase in As (V) immobilization was noted at Ca/As molar ratios greater than or equal to 2.5: 1. This observation was also confirmed by XRD. The effectiveness of both As (III) and As(V) immobilization in these slurries appeared to increase with increasing Ca/As molar ratios.

키워드