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Abstract 
 

This paper introduces a novel method of partitioning a 
cyclic workflow graph into the subgraphs of acyclic 
flows. The way of iterative classification of nodes 
according to feedback structures and deriving 
subgraphs of acyclic flows is described with 
illustrative examples. The proposed method allows a 
cyclic workflow model to be analyzed further, if 
necessary, with several smaller subflows, which are 
all acyclic. 
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1. Introduction 

The recent surge of e-business research and 
development has led to increasing interest in the field 
of workflow management ([2], [4], [7], [11]). 
Workflow management systems automate business 
processes, represented in pertinent workflow models, 
by coordinating and controlling the flow of work and 
information among various participants [12] .  

Workflow models must be correctly defined 
before being deployed in a workflow management 
system to avoid any costly maintenance delays due to 
runtime errors in the process model [3]. 
Graph-structured workflow models provide a great 
flexibility for depicting complex process behavior in a 
fairly compact form. This free-form nature, on the 
other hand, yields models that may fall at the discretion 
of the modeler and create modeling situations that 
cannot be executed or will behave in a manner not 
expected by the modeler [5]. 

Graph reduction [10] or block-wise abstraction 
[6] has been proposed to identify structural conflicts in 
workflow graphs, but both approaches are limited to 
acyclic models [1]. Lin et al. [9] extended the graph 
reduction technique to handle cyclic models, but with 
the cost of higher complexity [1].  

This paper introduces a novel method of 
partitioning a cyclic workflow graph into the 
subgraphs of acyclic flows. An algorithm to compute 
the rank of a node, defined with elementary paths, in a 
cyclic workflow graph is introduced. The way of 
iterative classification of nodes according to feedback 
structures and deriving subgraphs of acyclic flows is 
described with illustrative examples. 

2. Workflow models in directed graphs and 
matrix representation 

A workflow graph is a directed graph G = [V, T] with a 
set of nodes V and a set of arcs (i, j) ∈ T, where i, j ∈ V.  
Each arc, called as a transition, links two nodes and 
represents the execution order of nodes. A node is 
classified into two types, task and coordinator. A task, 
represented by a rectangle, stands for the work to be 
done to achieve some objectives. A coordinator, 
represented by a circle, stands for a point where 
succeeding path(s) to follow is selected or different 
paths are merged. Depending on the types of nodes and 
the number of incoming and outgoing transitions, 
nodes can be classified into 5 categories, i.e., sequence, 
AND-split, AND-join, OR-split, and OR-join, as shown 
in Figure 1. Start and End nodes are used to indicate 
the beginning and the end of the given workflow 
process, respectively. 

 

sequence AND-split AND-join OR-split OR-join Start End
 

Figure 1. Classification of nodes in workflow graphs 
 

Figure 2(a) illustrates an example workflow with 
cycles, modified from [10]. In general a workflow 
process is represented as a sparse graph with M <<N 2, 
where M = | T | is the number of transitions and N = | V 
| is the number of nodes. Figure 2(b) shows the 
column-wise compacted adjacency matrix, with two 

tables α(•) of dimension N +1 and β(•) of dimension 
M. For each node i ∈ V, table β lists the pred(i), where 
pred(i)  = { j | (j, i) ∈ T }, starting from the entry 
numbered α(i). We make a simplifying assumption on 
the workflow graph that a node cannot be a join and 
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split at the same time, which can be converted into a 
join node and a split node with a transition between 
them.  
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Figure 2. The graph and the column-wise compacted 
adjacency matrix for an example cyclic workflow 

3. Graph normalization with ranks of nodes 

By following the transitions from the Start node and 
visiting the nodes of a cyclic workflow model, 
transitions that lead to node(s) previously visited can 
be identified. The procedure IdentifyFJT( ) identifies 
all the feedback join transitions. This algorithm 
traverses different transition(s) at each iteration and 
has complexity of O(M). Table 1 shows, in part, the 
results when the above procedure applied to the 
workflow of Figure 2. 

 Procedure IdentifyFJT ( ) { 
  FJT ← φ . Ancs(i) ← φ for each node i. 
  P  ← {Start}    
   // P is the set of nodes of which successor 
   // nodes are to be visited at current iteration  
  Repeat Until P = φ {  
   Pnext ← φ  
   For all (i, j) ∈ T where i ∈ P { 
    If j ∈ Ancs (i), FJT ← FJT + (i, j) 
    Else { Ancs (j) ← Ancs (j) + (i + Ancs (i)); 

Pnext ← Pnext + j } 
   } 
   P ← Pnext  
  } 
 } 

 

TABLE 1. COMPUTATION EXAMPLE OF THE PROCEDURE 

iteration Results of steps 

1 
 

FJT  = φ, . Ancs(i) ← φ for each node i. 
P  = { 0 }. Ancs(1) = { 0 }. 

2 P  = { 1 }. Ancs(2) = { 0,1 }. 
… … 

7 
 

P  = { 8,9,10,11 }.  
Ancs(12) = Ancs(13) ={ 0,1,2,3,4,6,8 }; 
Ancs(14) = { 0,1,2,3,4,5,6,7,9,10 }; Ancs(15) = 
{ 0,1,2,3,5,7,10 }; 
1 ∈ Ancs(11) → FJT = {(11, 1)}  

8 

P  = { 12,13,14,15 }.  
Ancs(16) = { 0,1,2,3,4,5,6,7,9,10,14 }; Ancs(17) 
= { 0,1,2,3,4,5,6,7,9,10,14,15, 16 }; Ancs(18) = 
{ 0,1,2,3,4,5,6,7,8,9,10,12,14,15, 16 }; 
1 ∈ Ancs(13) → FJT = {(11, 1), (13, 1), }. 

… … 

For an acyclic and connected graph, the rank of 
node i, denoted by r(i) with r(Start) = 0, with the 
complexity of O(M)[8]. We define the rank of a node 
for a cyclic workflow graph by restricting the path 
should be elementary, i.e. the path should not meet the 
same node twice. With all feedback join transitions 
removed, the rank of each node can be computed from 
the resulting acyclic connected workflow graph with 
the complexity of O(M).  

Figure 3 shows the normalized graph of the 
workflow process in Figure 2, with nodes rearranged 
by their ranks indicated. Figure 4 shows another 
example of normalized graph for a workflow with 
nested cycles.  
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Figure 3. Normalized graph of workflow in Figure 2 

4. Identification of feedback structures and 
partitioning into the subgraphs of acyclic flows 

From the normalized graphs of Figure 3 and 4, we 
could find some interesting things. First, every dotted 
upstream transition (i, j), with r(i) > r(j), merges a 
feedback flow. In addition, each dashed transition 

  



initiates a new feedback flow. Transition (13, 7) in 
Figure 4 (b) has both characteristics. These transitions 
can be utilized as the cut sets to group the nodes in V.  

We will call these upstream transitions, from a 
node to another one of lower or equal rank, as 
Feedback Join Transitions, marked as FJT, where 

 FJT = { (i, j) ∈ T, r(i) > r(j) }. (1) 

FJT = {(11, 1), (13, 1)} and FJT = {(11, 7), (13, 7), 
(23, 19), (24, 1)} for the examples shown in Figure 2 
and 4, respectively. Each transition of FJT 
corresponds to each different elementary cycle of 
Figure 2 and 4, respectively 

Definition 1. For any i ∈ V, let the Order of Feedback 
of i, called by of(i), denote the minimum number of 
transitions of FJT to pass through to reach the End 
node. The subset of nodes with of(i) = n will be called 
as nth-order Feedback Nodes and denoted by FNn.  

Note that V = ∪n FNn. The subgraph spanned by FN0 
will be called as the main flow and will be denoted as 
MF(Start,End).  

Nodes of FN0 will not need any transitions in 
FJT to reach the End node, and FN0 can be identified 
as follows, 

 FN0 = { i | RFJT (i, End) = 1 }, (2) 

where RFJT (i, End), which can be computed with 
complexity of O(M),  denote the reachability of node i 
to the End node without passing through any 
transitions in FJT. That is, RFJT (i, End) = 1 when 
node i can reach the End node without passing through 
any transitions in FJT, or RFJT (i, End) = 0 otherwise. 
RFJT (End, End) is defined to be 1. Table 2 shows RFJT 
(i, End) for each node i, resulting V – FN0 = { 11, 13 } 
for the workflow in Figure 2. It can be shown that V – 
FN0 = { 11, 16, 17, 18, 19, 20, 21, 22, 23, 24 } for the 
workflow in Figure 4.  

TABLE 2. R FJT (I, END) OF EACH NODE I FOR THE 
WORKFLOW IN FIGURE 2 

i 0 1 2 3 4 5 6 7 8 9 16 1
1 12 13 14 15 16 17 18 19 20

RFJT (i, 
E d)

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 

Definition 2.  The nth-order Feedback Joins, denoted 
by FJn, is the subset of feedback joins that merge the 
subgraph spanned by FNn+1 to the subgraph spanned 
by FNn. That is FJn = { j | (i, j) ∈ T, i ∈ FNn+1 ∪ FSn, 
j ∈ FNn}. The nth-order Feedback Splits, denoted by 
FSn, is the subset of feedback splits that split the 
subgraph spanned by FNn+1 from the subgraph 
spanned by FNn. That is FSn = { i | (i, j) ∈ T, i ∈ FNn, 
j ∈ FNn+1 ∪ FJn}. 

Condition (1) can also be utilized to identify 
Feedback Joins of all order, denoted by FJ, where  

FJ = ∪n FJn = { j | (i, j) ∈ FJT }. (3) 

FJ = { 1 } and FJ = { 1, 7, 19 } for the examples shown 
in Figure 2 and 4, respectively. Note that 

FJn = FJ ∩ FNn..  (4) 

From FJ0 = FJ ∩ FN0, we now get FJ0 = { 1 } and FJ0 

= { 1, 7 } for the examples of Figure 2 and 4, 
respectively.  

Finally, FS0 will be identified. Since FN1 is not 
available yet and there will be no transition from a 
node in FN0 to any node in ∪n≥2 FNn, we identify FS0 
as follows,  

FS0 = { i | (i, j) ∈ T, i ∈ FN0,  and j ∈ (V – FN0 ) 
∪ FJ 0 } (5) 

FS0 = { 7, 8 } and FS0 = { 10, 13, 15 } for the 
workflow in Figure 2 and 4, respectively.  

At every iteration, our method identifies FNn, 
FJn and FSn. When all the nodes in FJ are classified 
into one of FJn, we can conclude that FNn+1 = V – ∪m≤n 
FJm and no further classification of nodes is required. 
For instance, FJ0 = FJ for the workflow in Figure 2, 
and we can conclude with FN1 = V – FN0 = { 11, 13 }. 
Otherwise, there exist more feedback structures in the 
subgrpah spanned by V – ∪m≤n FJm and further 
classification of nodes is required.  

Definition 3. For any fs ∈ FSn-1, let Descn (fs) denote 
the set of nodes in FNn and Descn+ (fs) denote the set of 
nodes in ∪m≥n FNm, respectively, that can be reached 
from fs by the transitions in T.  

Definition 4.  Let fs ∈ FSn-1 and fj ∈ FJn-1. The 
nth-order Feedback Flow FFn(fs, fj) denote the 
subgraph spanned by the set of nodes { fs, fj } ∪ Descn 
(fs). The (n+)th-order Feedback Flow FFn+(fs, fj) 
denote the subgraph spanned by the set of nodes { fs, 
fj } ∪ Descn+ (fs).  

With FN0, FJ0, FS0, and FN1, the workflow of 
Figure 2 can be partitioned into, the main flow MF (0, 
20), FF1(7, 1) spanned by {7, 11, 1}, and FF1(8, 1) 
spanned by {8, 13, 1}, requiring no further partitioning. 
For the workflow of Figure 4, we have MF (0, 25), 
FF1(10, 7), FF1(13, 7), and FF1+(15, 1). Since 
FF1+(15, 1) contains a node of FJ not classified yet, i.e. 
node 19 ∉ FJ0, it contains some cyclic structure and 
requires further partitioning. In similar way, we can get 
FN1 = { 11, 16, 17,18, 19, 20, 21, 22, 24 }, FJ1 = 
{ 19 }, and FS1 = { 2 } from FF1+(15, 1). Since nodes 
in FJ are fully classified, we can conclude that FN2 = 
V – FN0 – FN1  = { 23 } and derive  additional acyclic 
subgraphs of FF1 (15, 1) and FF2 (22, 19). Table 3 
summarizes the results of the analyses for the 
workflow graphs of Figure 2 and 4. 
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(a) A workflow with nested cycles 
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(b) Normalized graph  

Figure 4. Normalization of a workflow graph with nested cycles 
 

TABLE 3. SUMMARY OF PARTITIONING  

Case Target 
graph Classified nodes Derived 

subgraphs

Workflow of 
Figure 2 G(V,T) 

FJ = { 1 }; 
V – FN0= { 11, 13 }, 
FJ0= { 1 }, FS0= { 7, 8 }. 

MF (0, 20)
FF1 (7, 1) 
FF1 (8, 1) 

G(V,T) 

FJ= { 1, 7, 19 }; 
V – FN0= { 11, 16, 17,18, 
19, 20, 21, 22, 23, 24  }, 
FJ0= { 1, 7 }, FS0= { 10, 
13, 15}. 

MF (0, 25) 
FF1 (10, 7)
FF1 (13, 7)
FF1+ (15, 1)Workflow of 

Figure 4 

FF1+ 
(15, 1) 

FN1= { 11, 16, 17,18, 19, 
20, 21, 22, 24 },  
FJ1= { 19 }, FS1= { 22 }; 
FN1= { 23 }. 

FF1 (15, 1)
FF2 (22, 19)

Let q be the maximum degree of feedback and r 
be the average number of subgraphs in FNn that need 
to be further partitioned, in the given workflow graph. 
Identification of FNn (with FSn-1 and FJn-1) from FF 
(n-1)+ (fsn-1, fjn-1), where fs ∈ FSn-1 and fj ∈ FJn-1, is 
rather straight forward with RFJT (fsn-1, fjn-1) that has 
complexity O(M′), where M′ < M is the number of 
transitions in the cyclic subgraph FF (n-1)+ (fsn-1, fjn-1). 
Therefore, complexity of this step will be O(qrM).  

5. Concluding Remarks  

In this paper, we proposed a novel method of 
partitioning a cyclic workflow graph into the 
subgraphs of acyclic flows. We showed that how to 
identify the main flow and consecutively partition off 
subgraphs of acyclic feedback flows. Each finally 
derived subgraph of a feedback flow matches for the 
corresponding elementary cycle in the given workflow 
graph. The proposed method allows a cyclic workflow 
model to be analyzed further, if necessary, with several 
smaller subflows, which are all acyclic. For instance, 
graph reduction technique [9], if applied to a cyclic 
workflow graph to be partitioned into s subflow graphs, 
is allowed to handle cyclic workflow models and even 

improve the performance from O((M+N)2⋅N2) ([1], 
[9]) to O((M+N)2⋅N2 / s3 ).  
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