
Classification by feedback structure and partitioning into acyclic subgraphs
for a cyclic workflow graph

Yongsun Choi

Dept. of Systems Management & Engineering, Inje University, Kimhae, Korea, yschoi@inje.ac.kr

Abstract

This paper introduces a novel method of partitioning a
cyclic workflow graph into the subgraphs of acyclic
flows. The way of iterative classification of nodes
according to feedback structures and deriving
subgraphs of acyclic flows is described with
illustrative examples. The proposed method allows a
cyclic workflow model to be analyzed further, if
necessary, with several smaller subflows, which are
all acyclic.

Keywords: cyclic workflow graph, graph algorithms,
rank, feedback, subflow

1. Introduction

The recent surge of e-business research and
development has led to increasing interest in the field
of workflow management ([2], [4], [7], [11]).
Workflow management systems automate business
processes, represented in pertinent workflow models,
by coordinating and controlling the flow of work and
information among various participants [12] .

Workflow models must be correctly defined
before being deployed in a workflow management
system to avoid any costly maintenance delays due to
runtime errors in the process model [3].
Graph-structured workflow models provide a great
flexibility for depicting complex process behavior in a
fairly compact form. This free-form nature, on the
other hand, yields models that may fall at the discretion
of the modeler and create modeling situations that
cannot be executed or will behave in a manner not
expected by the modeler [5].

Graph reduction [10] or block-wise abstraction
[6] has been proposed to identify structural conflicts in
workflow graphs, but both approaches are limited to
acyclic models [1]. Lin et al. [9] extended the graph
reduction technique to handle cyclic models, but with
the cost of higher complexity [1].

This paper introduces a novel method of
partitioning a cyclic workflow graph into the
subgraphs of acyclic flows. An algorithm to compute
the rank of a node, defined with elementary paths, in a
cyclic workflow graph is introduced. The way of
iterative classification of nodes according to feedback
structures and deriving subgraphs of acyclic flows is
described with illustrative examples.

2. Workflow models in directed graphs and
matrix representation

A workflow graph is a directed graph G = [V, T] with a
set of nodes V and a set of arcs (i, j) ∈ T, where i, j ∈ V.
Each arc, called as a transition, links two nodes and
represents the execution order of nodes. A node is
classified into two types, task and coordinator. A task,
represented by a rectangle, stands for the work to be
done to achieve some objectives. A coordinator,
represented by a circle, stands for a point where
succeeding path(s) to follow is selected or different
paths are merged. Depending on the types of nodes and
the number of incoming and outgoing transitions,
nodes can be classified into 5 categories, i.e., sequence,
AND-split, AND-join, OR-split, and OR-join, as shown
in Figure 1. Start and End nodes are used to indicate
the beginning and the end of the given workflow
process, respectively.

sequence AND-split AND-join OR-split OR-join Start End

Figure 1. Classification of nodes in workflow graphs

Figure 2(a) illustrates an example workflow with
cycles, modified from [10]. In general a workflow
process is represented as a sparse graph with M <<N 2,
where M = | T | is the number of transitions and N = | V
| is the number of nodes. Figure 2(b) shows the
column-wise compacted adjacency matrix, with two

tables α(•) of dimension N +1 and β(•) of dimension
M. For each node i ∈ V, table β lists the pred(i), where
pred(i) = { j | (j, i) ∈ T }, starting from the entry
numbered α(i). We make a simplifying assumption on
the workflow graph that a node cannot be a join and

mailto:yschoi@inje.ac.kr

split at the same time, which can be converted into a
join node and a split node with a transition between
them.

10: Prepare cheques
for ANZ Bank

18

14

6

17: Issue
cheque

16: Signatures from
finance director

15: Update accounts
database

12: Reject
request

9: Prepare cheque
for CITIBANK

4: Approval from
Finance Director

2: Payment
Request

19: File payment
request

0: Start

20:End

US$

A$
5: Approval from

Dept. Managerr

7 8Approved
Not Approved

3

1

13: Ask account
adjustment

11: Ask amount
adjustment

RejectedApproved

Adjustment
required

Adjustment
required

24
20

25232119181715141312111098765430
21191817161514131211109876543210

19
24

18
23

16
20

12
21

17
22 25

15141010988776654332113110
191817161514131211109876543210

α(•)

β(•)

…

Figure 2. The graph and the column-wise compacted
adjacency matrix for an example cyclic workflow

3. Graph normalization with ranks of nodes

By following the transitions from the Start node and
visiting the nodes of a cyclic workflow model,
transitions that lead to node(s) previously visited can
be identified. The procedure IdentifyFJT() identifies
all the feedback join transitions. This algorithm
traverses different transition(s) at each iteration and
has complexity of O(M). Table 1 shows, in part, the
results when the above procedure applied to the
workflow of Figure 2.

 Procedure IdentifyFJT () {
 FJT ← φ . Ancs(i) ← φ for each node i.
 P ← {Start}
 // P is the set of nodes of which successor
 // nodes are to be visited at current iteration
 Repeat Until P = φ {
 Pnext ← φ
 For all (i, j) ∈ T where i ∈ P {
 If j ∈ Ancs (i), FJT ← FJT + (i, j)
 Else { Ancs (j) ← Ancs (j) + (i + Ancs (i));

Pnext ← Pnext + j }
 }
 P ← Pnext
 }
 }

TABLE 1. COMPUTATION EXAMPLE OF THE PROCEDURE

iteration Results of steps

1

FJT = φ, . Ancs(i) ← φ for each node i.
P = { 0 }. Ancs(1) = { 0 }.

2 P = { 1 }. Ancs(2) = { 0,1 }.
… …

7

P = { 8,9,10,11 }.
Ancs(12) = Ancs(13) ={ 0,1,2,3,4,6,8 };
Ancs(14) = { 0,1,2,3,4,5,6,7,9,10 }; Ancs(15) =
{ 0,1,2,3,5,7,10 };
1 ∈ Ancs(11) → FJT = {(11, 1)}

8

P = { 12,13,14,15 }.
Ancs(16) = { 0,1,2,3,4,5,6,7,9,10,14 }; Ancs(17)
= { 0,1,2,3,4,5,6,7,9,10,14,15, 16 }; Ancs(18) =
{ 0,1,2,3,4,5,6,7,8,9,10,12,14,15, 16 };
1 ∈ Ancs(13) → FJT = {(11, 1), (13, 1), }.

… …

For an acyclic and connected graph, the rank of
node i, denoted by r(i) with r(Start) = 0, with the
complexity of O(M)[8]. We define the rank of a node
for a cyclic workflow graph by restricting the path
should be elementary, i.e. the path should not meet the
same node twice. With all feedback join transitions
removed, the rank of each node can be computed from
the resulting acyclic connected workflow graph with
the complexity of O(M).

Figure 3 shows the normalized graph of the
workflow process in Figure 2, with nodes rearranged
by their ranks indicated. Figure 4 shows another
example of normalized graph for a workflow with
nested cycles.

10

18

14

6

17

16

15 12

9

4

2

19

0

20

5

7

8

3

1

13

11

0

1

2

3

4

5

6

7

8

9

10

11

12

FN0 FN1

Figure 3. Normalized graph of workflow in Figure 2

4. Identification of feedback structures and
partitioning into the subgraphs of acyclic flows

From the normalized graphs of Figure 3 and 4, we
could find some interesting things. First, every dotted
upstream transition (i, j), with r(i) > r(j), merges a
feedback flow. In addition, each dashed transition

initiates a new feedback flow. Transition (13, 7) in
Figure 4 (b) has both characteristics. These transitions
can be utilized as the cut sets to group the nodes in V.

We will call these upstream transitions, from a
node to another one of lower or equal rank, as
Feedback Join Transitions, marked as FJT, where

 FJT = { (i, j) ∈ T, r(i) > r(j) }. (1)

FJT = {(11, 1), (13, 1)} and FJT = {(11, 7), (13, 7),
(23, 19), (24, 1)} for the examples shown in Figure 2
and 4, respectively. Each transition of FJT
corresponds to each different elementary cycle of
Figure 2 and 4, respectively

Definition 1. For any i ∈ V, let the Order of Feedback
of i, called by of(i), denote the minimum number of
transitions of FJT to pass through to reach the End
node. The subset of nodes with of(i) = n will be called
as nth-order Feedback Nodes and denoted by FNn.

Note that V = ∪n FNn. The subgraph spanned by FN0
will be called as the main flow and will be denoted as
MF(Start,End).

Nodes of FN0 will not need any transitions in
FJT to reach the End node, and FN0 can be identified
as follows,

 FN0 = { i | RFJT (i, End) = 1 }, (2)

where RFJT (i, End), which can be computed with
complexity of O(M), denote the reachability of node i
to the End node without passing through any
transitions in FJT. That is, RFJT (i, End) = 1 when
node i can reach the End node without passing through
any transitions in FJT, or RFJT (i, End) = 0 otherwise.
RFJT (End, End) is defined to be 1. Table 2 shows RFJT
(i, End) for each node i, resulting V – FN0 = { 11, 13 }
for the workflow in Figure 2. It can be shown that V –
FN0 = { 11, 16, 17, 18, 19, 20, 21, 22, 23, 24 } for the
workflow in Figure 4.

TABLE 2. R FJT (I, END) OF EACH NODE I FOR THE
WORKFLOW IN FIGURE 2

i 0 1 2 3 4 5 6 7 8 9 16 1
1 12 13 14 15 16 17 18 19 20

RFJT (i,
E d)

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1

Definition 2. The nth-order Feedback Joins, denoted
by FJn, is the subset of feedback joins that merge the
subgraph spanned by FNn+1 to the subgraph spanned
by FNn. That is FJn = { j | (i, j) ∈ T, i ∈ FNn+1 ∪ FSn,
j ∈ FNn}. The nth-order Feedback Splits, denoted by
FSn, is the subset of feedback splits that split the
subgraph spanned by FNn+1 from the subgraph
spanned by FNn. That is FSn = { i | (i, j) ∈ T, i ∈ FNn,
j ∈ FNn+1 ∪ FJn}.

Condition (1) can also be utilized to identify
Feedback Joins of all order, denoted by FJ, where

FJ = ∪n FJn = { j | (i, j) ∈ FJT }. (3)

FJ = { 1 } and FJ = { 1, 7, 19 } for the examples shown
in Figure 2 and 4, respectively. Note that

FJn = FJ ∩ FNn.. (4)

From FJ0 = FJ ∩ FN0, we now get FJ0 = { 1 } and FJ0

= { 1, 7 } for the examples of Figure 2 and 4,
respectively.

Finally, FS0 will be identified. Since FN1 is not
available yet and there will be no transition from a
node in FN0 to any node in ∪n≥2 FNn, we identify FS0
as follows,

FS0 = { i | (i, j) ∈ T, i ∈ FN0, and j ∈ (V – FN0)
∪ FJ 0 } (5)

FS0 = { 7, 8 } and FS0 = { 10, 13, 15 } for the
workflow in Figure 2 and 4, respectively.

At every iteration, our method identifies FNn,
FJn and FSn. When all the nodes in FJ are classified
into one of FJn, we can conclude that FNn+1 = V – ∪m≤n
FJm and no further classification of nodes is required.
For instance, FJ0 = FJ for the workflow in Figure 2,
and we can conclude with FN1 = V – FN0 = { 11, 13 }.
Otherwise, there exist more feedback structures in the
subgrpah spanned by V – ∪m≤n FJm and further
classification of nodes is required.

Definition 3. For any fs ∈ FSn-1, let Descn (fs) denote
the set of nodes in FNn and Descn+ (fs) denote the set of
nodes in ∪m≥n FNm, respectively, that can be reached
from fs by the transitions in T.

Definition 4. Let fs ∈ FSn-1 and fj ∈ FJn-1. The
nth-order Feedback Flow FFn(fs, fj) denote the
subgraph spanned by the set of nodes { fs, fj } ∪ Descn
(fs). The (n+)th-order Feedback Flow FFn+(fs, fj)
denote the subgraph spanned by the set of nodes { fs,
fj } ∪ Descn+ (fs).

With FN0, FJ0, FS0, and FN1, the workflow of
Figure 2 can be partitioned into, the main flow MF (0,
20), FF1(7, 1) spanned by {7, 11, 1}, and FF1(8, 1)
spanned by {8, 13, 1}, requiring no further partitioning.
For the workflow of Figure 4, we have MF (0, 25),
FF1(10, 7), FF1(13, 7), and FF1+(15, 1). Since
FF1+(15, 1) contains a node of FJ not classified yet, i.e.
node 19 ∉ FJ0, it contains some cyclic structure and
requires further partitioning. In similar way, we can get
FN1 = { 11, 16, 17,18, 19, 20, 21, 22, 24 }, FJ1 =
{ 19 }, and FS1 = { 2 } from FF1+(15, 1). Since nodes
in FJ are fully classified, we can conclude that FN2 =
V – FN0 – FN1 = { 23 } and derive additional acyclic
subgraphs of FF1 (15, 1) and FF2 (22, 19). Table 3
summarizes the results of the analyses for the
workflow graphs of Figure 2 and 4.

3

5
0 762 8

4
9 10 12 1413 15

19
24 16

22

11

21 20

17

18

251

23

(a) A workflow with nested cycles

3
5

0 761 8
4

9 10 12 1413 15

19
24

16 22
11

2120
17
18

252

0 31 2 4 5 7 98 106 11 12 13 14 15 16 17 18 19 20

23

FN0

FN1

FN2

(b) Normalized graph

Figure 4. Normalization of a workflow graph with nested cycles

TABLE 3. SUMMARY OF PARTITIONING

Case Target
graph Classified nodes Derived

subgraphs

Workflow of
Figure 2 G(V,T)

FJ = { 1 };
V – FN0= { 11, 13 },
FJ0= { 1 }, FS0= { 7, 8 }.

MF (0, 20)
FF1 (7, 1)
FF1 (8, 1)

G(V,T)

FJ= { 1, 7, 19 };
V – FN0= { 11, 16, 17,18,
19, 20, 21, 22, 23, 24 },
FJ0= { 1, 7 }, FS0= { 10,
13, 15}.

MF (0, 25)
FF1 (10, 7)
FF1 (13, 7)
FF1+ (15, 1)Workflow of

Figure 4

FF1+
(15, 1)

FN1= { 11, 16, 17,18, 19,
20, 21, 22, 24 },
FJ1= { 19 }, FS1= { 22 };
FN1= { 23 }.

FF1 (15, 1)
FF2 (22, 19)

Let q be the maximum degree of feedback and r
be the average number of subgraphs in FNn that need
to be further partitioned, in the given workflow graph.
Identification of FNn (with FSn-1 and FJn-1) from FF
(n-1)+ (fsn-1, fjn-1), where fs ∈ FSn-1 and fj ∈ FJn-1, is
rather straight forward with RFJT (fsn-1, fjn-1) that has
complexity O(M′), where M′ < M is the number of
transitions in the cyclic subgraph FF (n-1)+ (fsn-1, fjn-1).
Therefore, complexity of this step will be O(qrM).

5. Concluding Remarks

In this paper, we proposed a novel method of
partitioning a cyclic workflow graph into the
subgraphs of acyclic flows. We showed that how to
identify the main flow and consecutively partition off
subgraphs of acyclic feedback flows. Each finally
derived subgraph of a feedback flow matches for the
corresponding elementary cycle in the given workflow
graph. The proposed method allows a cyclic workflow
model to be analyzed further, if necessary, with several
smaller subflows, which are all acyclic. For instance,
graph reduction technique [9], if applied to a cyclic
workflow graph to be partitioned into s subflow graphs,
is allowed to handle cyclic workflow models and even

improve the performance from O((M+N)2⋅N2) ([1],
[9]) to O((M+N)2⋅N2 / s3).

References
[1] Aalst, W. M. P. van der, “An alternative way to

analyze workflow graphs,” 14th Int. Conf. On Adv. Info.
Sys. Eng., pp. 535-552, 2002.

[2] Aissi, S., P. Malu, and K. Srinivasan. “E-business
process modeling: the next big step,” IEEE Computer,
vol. 35, no. 5, pp. 55-62, 2002.

[3] Basu, A. and R. W. Blanning, “A formal approach to
workflow analysis,” Information Systems Research, vol.
11, no. 1, pp. 17-36, 2000.

[4] Basu, A. and A. Kumar, “Research commentary:
Workflow management issues in e-Business,”
Information Systems Research, vol. 13, no. 1, pp. 1-14,
2002.

[5] Business Process Management Initiative, Business
Process Modeling Notation, Working Draft 1.0,
August 2003, available at http://www.bpmi.org/

[6] Choi, Y. and J. L. Zhao, “Matrix-based abstraction and
verification of e-business processes,” Proc. the 1st
Workshop on e-Business, pp. 154-165, 2002.

[7] Delphi Group, BPM2002: Market Milestone Report,
available at http://www.delphigroup.com/.

[8] Gondran, M. and M. Minoux, Graphs and Algorithms,
John Wiley & Sons Ltd., 1984.

[9] Lin, H., Z. Zhao, H. Li, and Z. Chen, “A novel graph
reduction algorithm to identify structural conflicts,”
Proc. of the 35th Hawaii Int. Conf. On Sys. Sci., IEEE
Computer Society Press, 2002.

[10] Sadiq, W. and M. E. Orlowska, “Analyzing process
models using graph reduction techniques,” Information
Systems, vol. 25, no. 2, pp.117-134, 2000.

[11] Sheth, A. P., W. M. P. van der Aalst, and I. B. Arpinar,
“Processes driving the networked economy,” IEEE
Concurrency, vol. 7, no. 3, pp. 18–31, 1999.

[12] Workflow Management Coalition, Glossary.
Document Number WfMC-TC-1011, 1999.

http://www.delphigroup.com/

