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Abstract

This paper considers a variation of customer order
scheduling problems. The variation is the case where
machine-job assignment is fixed, and the objective is to
minimize the sum of the completion times of the batches.
In customer order scheduling problems, jobs are dispatched
in batches. While a machine can process only one job ata
time, multiple machines can simultaneously process jobs in
a batch. We first establish a couple of lower bounds. Then,
we develop a dynamic programming (DP) algorithin that
runs in exponential time on the number of batches when
there exist two machines. For the same problem with
arbitrary number of machines, we present two simple
heuristics, which use simple scheduling rules such as
shortest batch first and shortest makespan batch first rules.
Finally, we empirically evaluate the heuristics.

1. Introduction

This work considers a scheduling problem where each job
is part of some batch (customer order). The composition of
the jobs in the batch is prespecified. While a machine can
process only one job at a time, multiple machines can
simultaneously process jobs in the batch. The completion
time of the batch is the latest completion time of any job in
the batch. A restriction on this environment is that
machine-job assignment is fixed. Hence, jobs are processed
by pre-assigned machines. The objective is to minimize the
sum of the batch completion times.

This problem is introduced by Roemer and Ahmadi (1997}
and Roemer ef af. (2002). Their research is motivated by a
manmufacturer who produces three types of semi-finished
lenses. Each customer order consists of different quantities
of the three types of lenses, and a different type of lenses
must be processed by a different machine because of the
nature of processing. The customer order cannot be shipped
to the customer unless the entire order is completed.

This example can be further extended to general customer
order scheduling problems. Consider a manufacturing
facility, which produces different types of products. A
customer can request a variety of products in an order.
Afier the entire order is produced, the products are shipped

to the customer. Each order is a batch and a product is a job.

The composition of the batch is specified by the order.
Usually, a different machines process a different product.
For the batch scheduling problem where the completion
time is based on the latest completion time of a job in the
batch, Julien and Magazine (1990) examine a single
machine problem where the objective is to minimize the
total completion time of the batches. A job-dependent setup
time is incurred between two different types of jobs. They
develop a polynomial time DP algorithm for the problem
when there are two types of jobs and when the batch
processing order is fixed. Coffman et af (1989) examine a
similar problem where the batch processing order is not

fixed. They develop an O(#"'?) procedure. Baker (1988)
considers a problem similar to Coffiman et af (1989).

However, for one type of job, those jobs processed during
the same production run (setup) are not available until the
completion of the production run. This restriction is called
batch availability (see Santos and Magazine, 1985). Gupta
et al (1997) consider the single machine problem where
each order must have one job from each of several job
classes. Also, there is a setup time whenever the job class
changes. Gerodimos ef af. (2000) study single machine
problems where each batch has one common job and one
distinct job. Ding (1990}, Liao (1996), and Yoon (2003)
also study the similar problem.

In the batch {or customer order) scheduling problems that
we consider in this work, there exist no setup times
between different jobs or different batches. Blocher and
Chhajed (1996) examine the problem with no restriction on
machine-job assignment, mimmizing the sum of batch
completion times in a parallel machine environment. They
show that the problem is NP-hard, develop several heuristic
methods, and two lower bounds. Yang and Posner (2003)
also consider the same problem, and develop three
heuristics and find their tight lower bounds. Yang (2003)
considers a variation of customer order scheduling problem
where batch sequence is fixed. He establishes the
complexity of the problem and develops a DP algorithm,
which runs in pseudo-polynomial time. Yang (2004) also
establishes the complexity of different customer order
scheduling problems and summarizes the known
complexity results.

Our problem focuses on the customer order scheduling
problem with a restriction such that the machine-job
assignment is fixed. Roemer and Ahmadi (1997) show that
the problem is NP-hard for two machine case. An casier
complexity proofis presented by Yang (2004).

We first infroduce some notation. Next, we study the
customer order scheduling problem with fixed machine-job
assignment. The objective is minimization of sum of batch
completion times. We first provide review on some
preliminary results including complexity of the problem.
Then, we establish two simple lower bounds for the
problem. For the two machine case, we develop a DP
algorithm, which runs in exponential time. Since the
problem is unary NP-complete, we provide two simple and
intuitive heuristics for the case where the number of
machines is arbitrary. Finally, we provide the result of
computational study.

2. Notation

We define some notation that is used in this work. Let
n  =number of jobs

N =sctofjobs={1,2,K ,n}

b =number of batches

B =set of batches = {1,2,K , 5}

n,  =rmumber of jobsinbatch i for ie B

A =set of machines={1,2,K ,m}
B. =setofjobsinbatch i for ic B

i
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B =set of jobs assigned to machine & for

ke M inbatch ie B
p; =processingtime of job j for je N
=L,5p;= total processing time of batch /B
PF = EJ_E 55 B =total processing time of jobs assigned to

machine & for kM inbatch i B
o, =schedule ofall jobs onmachine & for ke
o =schedule of all jobs
(7, )= completion time of batch 7 on machine

k for ieB and kel
(o) = completion time of batch 7 in schedule

o for ieB =max,, C,(F,)

Werepresent C,(o) as C, when there is no ambiguity.
The standard classification scheme for scheduling problems
(Graham er al., 1979) 18 & | oy | et;, where @ describes
the machine structure, e, gives the job characteristics or
restrictive requirements, and o, defines the objective
function to be minimized. We extend this scheme to
provide for batch completion times by using C,  in the

a, field.

3. Lower Bounds

In this section, we provide two lower bounds for the
optimal solution value. Assume that the batches are
indexed sothat P, <P, <A <P,

Remark 1. (Blocher and Chhajed, 1996) For problem

PIZCy .
bﬁerH\ Pe (1)
Fr piss m

Observe that the left side of the inequality (1) is the optimal
solution value to the Linear Programming (LP) relaxation
ofproblem P |XZC 5 where a job can be split into pieces

of any size and processed, simultaneously if desired, on
multiple machines without considering machine-job
assigmment.

We call this lower bound L1 and the solution value z?*',
respectively. Since 1.1 is a lower bound for problem

P ZCg andproblem P|ZC, with fixed machine-
job assignment is a special case of P ||XCp ,Llisalsoa
lower bound for P |XC;  with fixed machine-job

assignment.
Now, we consider another lower bound L2.

Lower Bound L2.

0.Set B =BF if B z¢ otherwise Bf=¢ for
ieB and keM .
Set P’ =total processing time of jobs in BF for
ieB and kel .

1. Reindex éf‘ sothat foreach ke, }E‘jk gﬁfjl for
i=12.K ,b-1.

2. Create a new set of batches éj- such that

B, =B'UB2UA UWB” for ieB.
3. Schedule batches él for ieB inindex order.

4. Output total completion time.
Steps 0 and 1 require OQ(mb) time. In Step 2, reindexing

B £ requires O(mblog b) . Since all other operations

require  Q(mb + n) , the time requirement of .2 is
O(mblogh+n).

The next remark establishes that z"* is a lower bound for
the problem.

Remark 2. L2 is a lower bound of an optimal solution
value for P||ZC 5 with fixed machine-job assignment.

Proof. Let o* and o’® be an optimal schedule and the
schedule created by L2, respectively. Reindex batches so

that schedule & is completed in index order.
Note that foreach ic 5, C;(c*)=

max{C, (o ),C,(c7),K ,C,(o,)} Let C (™) be
completion time of 7 th completed batch for i€ B and
k=AM Then, foreach ieB and keM, C[I.](cr;) =

ClotY=Pf +Pf +A + P*  Hence,
T CeM =5, Gy (%)
=37 max,_, (G, (o))}
> max,, {C,(0])}
= EL Clo 2 )

=z L2 ) 0
4. Preliminary Results
4.1 General Results
In this section, we provide reviews on some of preliminary
results for this problem.
Lemma 1. (Yang, 2004) For scheduling problems with
regular measures, there exists an optimal schedule without
inserted idle time.
As aresult of Lemma 1, we only consider a schedule with
this property. We say that batch i€ B is separared if on
some machine & €A/ | jobsinbatch i are not processed
consecutively.
Lemma 2. (Yang, 2004) For scheduling problems with
regular measures, theve exists an optimal schedule where
no batch is separated.
As aresult of Lemma 2, we assume batches are not
separated in an optimal schedule. We now present another
property of batch scheduling problems.
Lemma 3. (Blocher and Chhajed , 1996) For baich
scheduling problems with a regular measure, each machine
processes the batches which are processed on multiple
machines in the same order.
4.2. Complexity
Since each job is pre-assigned to a machine, we only need
to determine the sequence of jobs on each machine. Recall
that Lemma 3 implies that we only consider schedules
where batches that are processed by both machines are
processed in the same order. Consequently, to obtain an
optimal schedule, we only need to determine an optimal
batch sequence. The following result is due to Roemer and
Ahmadi (1997).
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Theorem 1. The recognition version of P || 2 C 5 with a

fixed machine-job assignment is unary NP-complete.

3. DP Algorithm
Now, we present a DP algorithm for P2 |XC;  with

fixed machine-job assignment. Since there are # batches
to sequence, enumeration requires O{d!) time to obtain
an optimal schedule. From Stirfing's approximation

formula, bl=+/27b(b/2)" (1+®(1/h)) . We present a DP
algorithm, which finds an optimal schedule for P2 ||ZC 5,

with fixed machine-job assignment in O(h25%) time.
Let (") be minimum total completion time of the
batches inset V for IV < B . Observe that given V' C B,
the completion time of the last batch is the same regardless
of batch processing order because total processing time on
each machine is fixed. Hence, to obtain an optimal
schedule, we only examine || different cases where the
different batches in 77 complete last. As an initial
condition, welet f(¢#)y=0.Define f() recursively as
follows:
f¥)= miﬂ;ey{f(V Wi+ maX{ZPf,ZPIZ}} for
el el

[V =1. @

Observe that max{}" . Pgl, IEVPf} is the completion

time of the last batch. In order to obtain f(2) the
minimal total completion time, we calculate f{J7) forall
VcB and 1<V |=b—-1. To record the optimal

choice at each iteration, let v(J7) represent the last batch
in a schedule which corresponds to (7). Then,

ma=mgmmm{f@W&D+mquahzah}fm

el el
[V |=1. &)}

We now formally describe a DP procedure that finds an
optimal schedule for P2 || X C5 with a fixed machine-job
assigmment.
Algorithm B1.
0. Set e*=¢, i=1,and B={1,2,K b}
l.Forall ¥ suchthat W R and |V |=¢,find F(7)

and v(J7) using (2) and (3). Break ties arbitrarily in

equation (1).
2.If i =5, then go to Step 3.

Otherwise, set i=i+1 and go to Step 1.
3. Use v to calculate the optimal schedule & *.

Output #* and f(B).
The following theorem verifies the optimality of Algorithm
B1.
Theorem 2. Algorithm Bl produces an optimal job-
machine assignment to P2 |2 Cs, with a fixed machine-

job assignment in O(b2°) time.
Proof. PBrcaking ties arbitrarily in Step 1 does not change
the optimal solution value because given V' < B, the last

batch completes at max{zgeyﬂl,zgeyﬂz} regardless of

batch processing orders. Hence, the choice of +(F7) does
not affect the value of (") for ¥ cV° c B and
VeV +1 .

In B, consider the determination of f{}7) in (1) for any
set ¥V B . Forall 'cV suchthat |F'|=V|-1,
F"Y is known. Recall that forany V7 < B | the

completion time of the last batch is the same regardless of
batch processing order. Hence, in Step 1, only |V7|

different cases are considered. Forthese |V7| different
cases, |}/| different batchesin ¥ complete last. From
the definition of (V) and (7)) for V'V and
[¥'=7 -1, F(V) isthe minimal total completion time
for the batchesin ¥ . Thus, f(B) is the optimal value.
Also, o* isan optimal schedule because

L Cilo*) = f(B).
Let [:J be the number of ways of choosing k£ <n

objects from a collection of 7 distinct objects without
regard to order. Step 0 requires O(b) time. Step 1

b
J different sets of batches for i=12,K b .

considers {
1

Also, for each set, i different candidates arc compared.
b

Thus, Step 1 requires O(# [ _J) time. Step 1 repeats for
1

i=1,2K.,b. Steps3, 4,5, and 6 require constant time,

and they repeat b times. Step 7 requires constant time.
Now,

s[0]] =)o 5 fa o)
] i

+A +M[ b J-‘rb

2 h-1

b
zifﬂl
=} {7}: + b —b{w}+b

=52"" .
. b
Therefore, B finds a solutionin O, (i [ _J)) =
I

O(b2°) time. Because the number of elementary

operations and size of all values are bounded by a
exponential function of the input length, B1 mns in
exponential time. O

6. An Example
We now illustrate the algorithm with an example. Consider

the instance where b=3, m =2, n, =2, n; =1,

pi=p. =1, ps=1, p, =2, and ps =3. Also,
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Bl ={l}, Bl ={2}, B,={3}, B;={4},and B;={5}.
For an initial condition, #{(¢) = 0 (See Table 1). Since

there exist three batches, three different states are
considered at Stage 1. At Stage 2, we also considered three

3
states because [2} = 3. Atthe final Stage, Bl produces

an optimal solution value. The optimal schedule is
o* = ((1,3,5),(2,4)) , and the optimal solution value is

z¥=143+5=9, O
Table 1. An example for B1.
Stage (i) State V) | 7O | ¥(¥) o
1 {1} 1 1 ((1),(2))
(2} 2 2 ((3),(4)
3} 3 3 ((5).¢)
2 {1,2} 4 2 ((1,3),(2.4)
{1,3} 5 3 ((1,5),(2))
{2,3} 6 3 ((3,5),(4))
3 {1,2,3} 9 3 ((1,3,5),(2,4))

7. Heuristics
In this section, we present two simple heuristics. First,
heuristic SB uses the Shortest Batch rule (SB, when a
machine becomes available, an unscheduled job in the
batch with a shortest total processing time is selected for
processing) to determine the batch sequence. We assume
that the order of job is arbitrary.
Heuristic SB
0. Reindex batches so that P, <P, for i=12,K . h-1.
1. Schedule all jobs in batches in index order. When there
exists ties, break it arbitrarily.

2. Output Zf.’lej and stop.

In Step 0, reindexing the batches requires Q(blogh) time.

Since all other operations require  O(3) time, the time

requirement of SB is Q(hlogh + ) .

Now, we introduce the next heuristic. Heuristic SM first
calculates makespan of each batch with given machine-job
relationship. Then, schedule batches with smallest
makespan.

Heuristic SM

0. Set Fq =0 for g=12K 5.

1. Calculate F, = max{P',P*} for i=12K b.

2. Reindex batches so that F, < F,, for i=12K ,h-1.
3. Schedule all jobs in batches in index order.

4. Output Zil C, and stop.

Steps 0 and 1 require O(b) time. In Step 2, reindexing
batches requires Q(blogh) time. Since all other
operations require  O(n) time, the time requirement of SM
is Qlblogb+n).

The next remark finds some special cases where heuristics
SM and SB generates an optimal schedule.

Remark 3. If n, =1 forall icB or b=1, then
heuristics SM and SB generate an optimal schedule for
problem P||ZC 5 with fixed machine-job assignment

Proof. If 4 =1 then any rule is optimal because switching
jobs in the batch does not change the solution value.

If 7, =1, then each batch is processed by one machine.

Since machine-job assignment is fixed, scheduling each
machine can be performed separately and then the solution
value for each machine can be added up to calculate

EC;  forthe entire problem.  Recall that each batch

contains only one job. Then, for each machine, the
problem reduces to 1|| X C, . Consequently, heuristic SB is

optimal. Also, if 7, =1, then heuristic SM generates the
same schedule as heuristic SB. O

8. Computational Study
We empirically evaluate heuristics SB and SM by
comparing solution values generated by heuristics to an

optimal LP solution value z*!' and a lower bound L2

'and z%*.

L2

2% . Also, we compare the performance of z*
For notational convenience, we let z ™ = max{z",z
As performance indicators of SB and SM, we use upper
bounds on relative errors 27 /2 and z™ /%"
respectively.

We observe the impact of different factors suchas &, #,,

2

and E(n) on the performances of SB and SM, where

E(9) 1is the expectation operator. For each problem
instance, m=2, n, ~DU[l,n] and p; ~ DUJL,99],
where 7 isa parameter and where DU[Au] represents
a discrete random variable uniformly distributed between

A and u . For a given set of test problems, & is fixed.

It follows that E(n,)=(+n)/2 and E(n)=5bE(n,)
=h{l+n)/2.

We generate 450 test problems under 15 conditions. To test
the effects of varying  F(#) , we consider three different
values of E(#): 16, 100, and 2500. To determine whether
different combinations of » and #, have an impact on
the performance of the heuristics, we consider five different
combinations of b and #; fora given value of E(n).

For each combination of the different factors, we solve 30
problems. Table 2 presents a summary of the design for the
computational study.

Table 2. Design for the Computational Study.

E(n)=16 E(n) =100 E(n) = 2500
b n b n b n
1 3l 1 199 1 4999
2 15 1 49 10 499
1 7 10 19 50 09
8 3 25 7 250 19
16 1 100 1 2500 1

The results are presented in Table 3. The average relative
error bound is the average ratio of the solution value of a

heuristic to z~" . Since each design point has 30
replications, the average relative error is caleulated over 30
test problems. When b =1, all average relative error
bounds are equal to 1 because the both heuristics produce
an optimal schedule (Remark 4). Also, when 7 =1, the
both heuristics generate an optimal schedule and errors are
due to the use of z*" instead of the optimal value
(Remark 4).
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We now summarize the results of our study. First, L1 and
L2 do not dominate each other. Foragiven E(#n), L1

performs better than L2 as 4 increases. Also, it seems
that L1 performs better as the number of jobs increases.
The results indicate that both heuristics perform better as
the number of jobs increases. While E{») is small, SM
performs well compared to SB, but as F(n) increases,
performance of SB is getting better than SM. For a given
E(n) , heunistic SB performs slightly better than heuristic

SMas b increases except for E{(n)=16.

Since SB and SM do not dominate each other and the
computational load is minimal, we may suggest that
managers in practice use the both heuristics and pick the
best result.

9. Discussion and Further Research
We have explored problem P || X C 5 with fixed machine-

job assignment. We provide a lower bound and for two
machine case, we develop a DP algorithm, which runs in
exponential time. We also develop two heuristics and
perform the computational study. Even though heuristics
are very simple, they are intuitive and provide practical
insight to the managers in the real world field.

For further research, we want to explore the characteristics
of the heuristics further. For example, we want to establish
the worst case bounds on the relative errors for those
heuristics considered. Also, we like to expand our research
to the problem with the arbitrary number of machines.
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