=

Abstract

In order to quickly respond to the rapldly
changing manufacturing environment, 1t 18
imperative for the system to have such capabilities
as flexibility, adaptability, reusability, etc. One of the
promising approaches for new manufacturing
paradigm satisfying those capabilities 1s the fractal
manufacturing system (FriVS). FrMS is based on the
concept of autonomously cooperating and self-
reconfigurable agents referred to as fractals. In this
paper, a fractal template is proposed to have both
fractal-specific and agent-specific characteristics and
proper techniques for implementation are also
selected. The proposed template can be easily
extended to the platform of FrMS which supports
simulation, shop flow control, and other research
issues existed in the manufacturing systems. An
example of applying the proposed template to the
simulation is also presented.

Keywords: fractal manufacturing system, fractal
template, distributed manufacturing systems, agent-
based control

1. Introduction

Today’s manufacturing systems need to adapt to
the rapidly changing environment that reflects
customers’ demands, unpredicted situations,
ncessant evolution of software and hardware,
advances in infrastructures, etc. To quickly
respond to the rapidly changing manufacturing
environment, it 1s imperative for the system to have
such capabilities as flexibility, adaptability,
reusability, etc. Ryu and Jung (2003) proposed the
FrMS architecture that could satisfy the
requirements for future manufacturing systems.
FrMS is based on the concept of autonomously
cooperating and self-reconfigurable agents referred
to as fractals. A fractal consists of five functional

3z gl El Ag)\]_}\]}ua] Q38 st

modules (a reporter, an organizer, a resolver, an
analyzer, and a monitor) and other several auxiliary
modules. On the basis of those modules, a fractal is
designed to possess the characteristics of self-
similarity, self-organization, goal-orientation,
dynamics, and vitality. Furthermore, by adopting
agent technology, FrMS has the agent-specific
characteristics such as autonomy, mobility,
intelligence, and cooperativeness.

Each fractal i1s a set of self-similar and self-
reconfigurable agents, and it interacts with other
fractals to achieve individually assigned goals. In
FrMS architecture, 18 kinds of agents exist and they
are categorized into five functional modules. Figure
1 illustrates the fractal architecture and relationships
among its functional modules. An observer which
has equipment monitoring agent and network
monitoring agent receives messages from the
environment (other fractals and equipment) thorough
the sensors, and a reporter delivers messages to the
environment. Other functional modules cooperate to
achieve its goals.

Recuest
Analyzer Organizer
Fractal Inform atiom -

Plan Fractal
Qbserved Fractal
Informm atinn Alternauves Rests Update Fracbal phpaad
Cunﬁgwahm
DE]:;Z:: FlansT Ensmns
Oh server Resolver Rep orter
Status reports
Knowledge ledge
RequesU'Update Iﬂvocauon F ommend
Actions
[nnwlellge

Inner Fractal DB
Outer Fractal

‘Actions

T
Environment

Figure 1 Relationships among functional modules
(Ryu and Jung, 2003)

FrMS has many promising characteristics. One
of the main characteristics 1s goal-orientation. A
fractal has an ability to generate its own goals

through the goal generation process (GGP) and to
modify individual goals through the goal
harmonizing process (GHP). With both the GGP and
the GHP, a fractal can achieve individual goals and
system goals simultaneously. FrMS can change its
configuration automatically through the dynamic
restructuring process (DRF). The GGP, the GHF, and
the DRP was studied 1n previous research, however,
because of the difficulties in considering overall
systems, those are only focused on the working
mechanism.

In this research, therefore, we design and
implement the fractal template for FrMS. The
designed template can be used in both verifying the
results of research issues and finding other problems
not considered in FrMS. In the next section we
present FrMS architecture related to this research.
The subsequent main section we illustrate fractal
template including its structure and functions with
selection of proper techniques. The following section
presents our scenario of applying template to FrMS.
The paper ends with some conclusions and short
reference to our future activities.

2. Fractal architecture

The fractal architecture is based on a
hierarchical structure and the design of a basic unit
incorporates a set of pertinent attributes that can
fully represent any level in the hierarchy (Tirpak et
al., 1992). This means that a fractal can represent
every part of the system from an entire
manufacturing shop at the highest-level to a physical
machine at the bottom-level (Shin et al., 2003). Each
fractal which is a set of autonomous agents provides
services required to accomplish individual goals and
acts independently while attempting to achieve the
shop-level goals. If its hierarchical level is changed
(it means that the fractal should handle other level
goals), through the fractal evolution process, the low

level fractal can be a high level fractal and vice versa.

Figure 2 shows inner structure of a fractal. Whatever
its hierarchical level, inner structure of a fractal is
same as the figure.

In FrMS, many kinds of agents exist and
according to their main functions they are classified
into six functional modules as shown in the Table 1.

3. Fractal template

The main purpose of developing the template is
to provide suitable abstractions and support fractal
specific characteristics such as reconfigurability,
flexibility, etc. In this research, we call a fractal an
agent when the fractal is created but not yet ready to
perform its roles. When the agent is ready to perform

gt s=tal/gh=gd3n=ral 2004 =3 == 3l

20048 58 21¢ ~228 &S

E
0
El

as a fractal, then we call it a fractal. Whatever its
hierarchical level, before fabricated, all agents have
same structure and modules. At first, each agent has
the following three functional modules.

Miscellaneous ‘ 7777777

Analyzer____ J Organizer __
———————— R

I | 1

| Rs _6e) |

| \ | |

o, |

b = Resolver !

d1/dDL

(CTTTTITTTIICCC €73 Mobile Agent
| {Machine; T Robot ; (Sensorj © ©)
| iMachine) { Robot } (Sensar; © %1 () Statianary Agen:

Figure 2 Inner structure of a fractal

Table 1 Fractal agents in FrMS
(Ryu and Jung, 2003)

Corresponding Agents

Functional
Module

Observer

- Network Monitoring Agent(S)

- Equipment Monitoring Agent(S)
- Schedule Evaluation Agent(S)

- Dispatching-rule Rating Agent(S)
- Real-time Simulation Agent(3)

- Schedule Generation Agent(M)
- Goal-Formation Agent(S)

- Task Governing Agent(S)

- Negotiation Agent(M)

- Knowledge Database Agent(M)
- Decision-Making Agent(S)

- Fractal Status Manager(3)

- Fractal Address Manager(S)

- Restructuring Agent(M)

- Network Command Agent(S)

- Equipment Command Agent(S)
Miscellaneo - System Agent(S)

us - Network Agent(S)

Analyzer

Resolver

Organizer

Reporter

® Communication module: This module has basic
functions to communicate with other agents and
fractals. It receives messages and interprets
them. When its high level fractal assigns roles
to the agent, this module delivers them to the
goal-formation module.

® Goal-formation module: The main function of
this module is to generate sub-goals and
determine whether the agent performs them or
the agent should assign generated sub-goals to
other agents or fractals. Basically this module
has functions of fuzzification of defuzzification

SAS5-10

to interpret assigned goals.
® System module: This module helps the agent

use other agents and modules like plug-in styles.

The structure seems to be simple; however, it
guarantees flexibility, reconfigurability, adaptability
and other possibilities of adopting new technologies.
With the structure a fractal can perform any task by
having appropriate plug-in modules or agents. The
structure is based on the concept of building
architecture with two entities: components and
connectors. Components (agents and modules) act as
the primary units of computation in a system and
connectors specify interactions and communication
patterns between components. This guarantees the
structure to support all the reconfigurable processes
in FrMS.

Figure 3 illustrates the simple view of the
template. When the communication module receives
message which contains fuzzy goals, it delivers them
to the goal-formation module. The goal-formation
module analyzes goals by defuzzification and
determines whether the fractal can perform them or
not. If it determines that it cannot handle some
received goals, the fractal makes connection to other
fractals and assigns goals to them. The system
module supports those processes. For example, 1f a
fractal is assigned to control equipment (various
roles may delivered), from this pomnt on, it prepares
performing given roles. When the fractal finishes
preparing processes, its structure 1s similar to that of
a fractal shown in figure 2.

Goal-fomation | Goal INPUT
Module ! <::|

1

1

Request i
]

Communication
System Module
Module . QUTPUT

Repository T

O Agent
D Module

Figure 3 Simple view of the template

~ e
/’I\ a
270 Y Plug-in
1 A
e 1 ~
+

&7 ~

RoRoR-Na

Requirements of a fractal template are follows.

® A fractal should receive mobile agents from
other fractals.

® A fractal should change its configuration during
run-time.

® Any agent in a fractal could communicate with
other agents.

® A mobile agent could share system resources
even though it comes from other fractals.

® A fractal should fully support all activities of

gt s=tal/gh=g23n=tsl 2004 =4 =03
2ooda 58 21 e ~22 g A==

agents.

In previous researches, researchers developed
agents with Java™ ™ language and Aglets™ which is a
Java-based agent development tool developed at the
IBM Research Laboratory in Japan. The platform of
Aglets™ has extensive support for security and
agent communication, and provides an excellent
package of documentation. However, there are some
difficulties in applying the platform to FrMS because
it 1s hard to control local machine and adopt fractal
concept by using that platform. Therefore, the
overall system consists of two systems, java
application for both system control and stationary
agents and Aglets™ server referred to as Tahiti for
mobile agents at that time. The configuration has
many unnecessary things and it gives rise to
unexpected problems of synchronization,
redundancy, interoperability, conflicts between
platforms, etc.

To develop the template, we consider above
requirements and try to eliminate those superfluous
things. We select Java™ language suitable for our
purpose. Java'™ language has many advantages for
us to develop FrMS. We use Remote Procedure Call
(RPC), Remove Method Invocation (RMI), Java
Management Extensions (JMX), Java Native
Interface (INI), etc. served by Java platform. Those
technologies enable us to implement the fractal
template. We use heterogeneous architecture style
which mixed with layered architecture and
blackboard architecture in the template. Software
architecture that adapts to changes in requirements
(Eracar and Kolar, 2000) is used in modeling
controllers. As a communication protocol, we adopt
mobile agent-based negotiation protocol (Shin and
Tung, 2004) for efficiently distributing the
communication loads of agents.

4. Applications

Because of realizing FrMS in its early stage, we
intend to phase the template in. At first, for verifying
proposed template we prepare the scenario of shop
floor simulation using the template. Figure 4
illustrates the layout which is similar to the FrMS
test bed. In the layout there are 11 fractals as
equipment controllers and one fractal as a high level
controller. For convenient we simplify this shop
floor by the following several assumptions.
® There is only one type of raw material which

comes from the AS/RS.
® There are three types of part, referred to as part

A, B, and C. Each part is produced by only one

operation.
® Machine 1 and 3 can produce part Aand B, and

machine 2 and 4 can produce part B and C as
well.

SAS5-11

® Producing time follows normal distribution.
® AS/RS keeps the balance of the number of parts
on Conveyor. The balanced number of each part
is three respectively.
® Finished part is unloaded to the destination
place along with one of following routes;
B Conveyor = L/U station = Robot 1 or 4
- AGV = Destination
B Conveyor - Robot 1 or 4 2 AGV =
Destination
® FHach robot spends same time to transfer parts.
@ Buffer size is unlimited and equipment is never
malfunctioned.
T #

= =

T
=4 ;.
A‘SIRS

\\\\\\ BCE
L

T [] Bufer_2 [Buffer_3 T
Figure 4 Exemplary layout

Second, we create equipment control modules
with layered architecture and abstraction. If a fractal
1s assigned to control machine 1, the fractal just
plugs the equipment control module of machine 1.
All equipment control modules serve same high
level interfaces. Third, we develop some necessary
agents and modules for the simulation such as a
negotiation agent, a fractal status monitoring agent,
etc. All the fractals are connected with each other
through the TCP/IP. Therefore, it is possible to locate
some fractals in other area.

To operate this shop floor controlled by fractals,
it i1s necessary to realize goal-formation process,
however; the research about this goal-formation
process in on going. Therefore, we assume the
process working and we assign well-defined goals to
each fractal.

5. Conclusion and further research

We have briefly described the architecture of
the FrMS, which 1s a new paradigm for evolving
manufacturing environment. As one of the efforts of
integrating research activities of FrMS, we design
and develop the fractal template. The template 1s
designed to create both agents and fractals. Tt

gt s=tal/gh=gd3n=ral 2004 =3 == 3l

20048 58 21¢ ~228 &S

E
0
El

supports dynamic restructuring process, fractal
evolution process and other activities of fractals.

However, still there are lots of uncovered areas
in FrMS, which is related to normally exiting
problems in manufacturing systems. We will reform
the template to be suitable for manufacturing
systems and devise appropriate algorithms to
improve productivity of overall systems.

Acknowledgement

This work was supported by Korea Research
Foundation Grant (KRF-2003-041-D00622).

Reference

Eracar, Y. A. and Kolar M.M. (2000), An architecture
for software that adapts to changes in
requirements. Journal of Systems and Software,
50(3), 209-219.

IBM Japan, Aglets homepage,
http/www. trl. itbm.com/aglets/index_e.htm.

Ryu, K-Y and Jung M-Y. (2003), Agent-based
fractal architecture and modeling for developing
distributed manufacturing systems. International
Journal of Production Research, 41(17), 4233-
4255,

Shin, M-S. and Jung, M-Y. (2004), MANPro:
Mobile Agent-based Negotiation Process for
distributed intelligent manufacturing,
International Journal of Production Research,
42(2), 303-320.

Shin, M-S, Cha, Y-P, Ryu, K-Y, and Jung, M-Y,
(2003), In: Proceedings of the S8th Annual

International Conference on Industrial
Engineering, 1034-1039, Las Vegas.
Sun Microsystems, Java homepage,

http:/java.sun.com/

Tirpak, T. M., Daniel, 5. M., LaLonde, I. D., and
Davis, W. 1. (1992), A Note on a Fractal
Architecture for Modeling and Controlling
Flexible Manufacturing Systems. IEEE
Transactions on Systems, Man, and Cybernetics,
22; 564-567.

SAS5-12

