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Abstract

This paper focuses on the problem of determining the
quantity and timing of disassembling used products
while satisfying the demand of their parts or
components over a planning horizon. The case of
multiple product types with parts commonality is
considered for the objective of minimizing the sum
of setup, disassembly operation, and inventory
holding costs. A heuristic 1s suggested, in which an
initial solution is obtained using a linear program-
ming relaxation method, and then improved by
perturbing the given solution using a dynamic
programming approach and a look-ahead check
while considering the trade-offs among different cost
factors.

1. Introduction

Disassembly has become a major 1issue for
countries and companies due to the obligation to the
environment and the society as well as its
profitability incurred from reusing or remanufactur-
ing used or end-of-life products. In general,
disassembly 1s an important step in the product
recovery process since used or end-of-life products
are disassembled before they are recycled or even

digprseddhene? Wirliiling is the problem of
determining the quantity and timing of disassembling
used or end-of-life products while satisfying the
demand of their parts or components over a planning
horizon. In this paper, we consider the case of
multiple product types with parts commonality. Here,
the parts commonality implies that products or
subassemblies share their parts/components. In
general, parts commonality gives lower inventory
holding costs, operation costs, and setup costs since

it allows an alternative use of parts/components
across different product types or subassemblies.
However, the existence of parts commonality makes
the problem more complex since it creates
interdependencies among  different parts or
components (Taleb et al. 1997, Taleb and Gupta
1997).

There are two previous research articles on the
case of multiple product types with parts
commonality. Taleb and Gupta (1997) suggest a
heuristic for the problem with two independent
objectives of mimimizing the number of products to
be disassembled and disassembly costs of products.
Later, Kim et ai. (2003) suggest a heuristic algorithm
for the problem with the objective of minimizing the
sum of the costs occurred during the disassembly
process. For previous research on other cases, see
Gupta and Taleb (1994), Taleb et al (1997,
Neuendorf ef al. (2001), Lee et al. (2002), and Lee
and Xirouchakis (2004).

As stated earlier, we consider the case of multiple
product types with parts commonality. The objective
18 to mimimize the sum of setup, disassembly
operation, and inventory holding costs. To solve the
problem, we suggest a two-phase heuristic, in which
the first phase generates an initial solution using the
linear programming relaxation heuristic suggested by
Kim et al (2003), and then the initial solution is
improved by perturbing the current solution while
considering the trade-offs among cost factors.

2. Problem Description

This section begins with the disassembly structure.
In the structure, the root item represents the product
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itself to be disassembled and a leaf item is an item
not to be disassembled further. Also, a child item
denotes an item that has at least one parent and a
parent item is an item that has more than one child
item. Note that in the structure considered here, there
may be two or more root items (multiple product
types) and each item may have two or more parents
(parts commonality).

Now, the problem considered in this paper can be
defined as follows: for a given disassembly structure
with multiple product types and parts commonality,
the problem is to determine the timing and quantity
of disassembling parent items, while satisfying the
demand of leaf items over a planning horizon. As
stated earlier, the objective is to minimize the sum of
setup, disassembly operation, and inventory holding
costs. The inventory holding cost is assumed to be
computed based on the end-of-period inventory.
Other assumptions made in this paper are: (a)
products are available whenever ordered; (b) de-
mands of parts/components are given and
deterministic; (c¢) backlogging is not allowed; and (d)
parts/components are perfect in quality.

The problem considered here can be formulated as
an integer program. In the formulation, without loss
of generality, all items are numbered with integers 1,
2., in ..., B,..., N. Here, i, denotes the index for
the last root item, and #; denotes the index for the first
leaf item. The notations used are summarized below.

ke setup cost of item i
y22 disassembly operation cost of item i
h;  inventory holding cost of item

d;  demand of item 7 in period ¢
ay;  yleld of item j obtained from disassembling
one unit of the item i

Iy 1nmitial inventory of item 7

l; disassembly lead time of item i
i) set of parents of item 7

M arbitrary large number

Y. = 1 1f there 1s a setup for item i in period ¢,
and O otherwise

X; disassembly quantity of item 7 in period ¢
I inventory level of item 7 at the end of period ¢

Now, the integer program is given below.

L -1 7 -1 7 N T
[P] Minimize ¥ Y5-Yo + 2 > p-Xe+ 2 Sh -1,

=l 1=l =111 =g, +11=1
subject to
Lo =1 + 2 @ Xy, — X
fori=i+1,...,4-1 and all ¢ (1)
Lo =1 + 2y W  Xiepy, — i
fori=id,...,N andall ¢ (2)

Xo<MTY, fori=1,..,4-1 andallt (3)
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Yx’t = {07 1}
X = 0 and integer
I;; = 0 and integer

fori=1,..,4-1 andallt (4)
fori=1,....i;—landall ¢ (5)
fori=i~+1,..,Nandallz (6)

The objective function denotes the sum of setup,
disassembly operation, and inventory holding costs.
Constraints (1) and (2) describe the inventory level
of non-root items at the end of each period
Constraint (3) guarantees that a setup cost in a period
is incurred if there is any disassembly operation at
that period.

3. Two-Phase Heuristic

Phase 1: Solution construction

An initial solution is obtained using the linear
programming relaxation approach (Kim et al., 2003).
The LP relaxation algorithm consists of two main
steps. In the first step, the problem [P] is solved
directly after relaxing the integral constraints (4), (5),
and (6), and then the LP solution (with real values) is
rounded down. In the second step, the rounded-down
solution 1s modified so that all the onginal
constraints of [P] are satisfied, while considering the
changes of setup, disassembly operation, and
inventory holding costs. See Kim et al (2003) for
more details.

FPhase 2: Improvement

(Given the initial disassembly schedule obtained in
the first phase, an improvement is made by changing
and evaluating the disassembly schedule of parent
items, repeatedly, using a dynamic program and a
look-ahead check. Here, the dynamic program is
similar to that of Wagner and Whitin (1958) for
single item lot-sizing problem, i.e., the problem is
decomposed in T subproblems and a new solution is
obtained by solving each subproblem recursively in
the forward direction. Also, the look-ahead check is
performed to consider the cost changes of other items
affected by changing the schedule.

Before explaining the dynamic program and look-
ahead check in more detail, we first explain the
method to change the current disassembly schedule
of a parent item. Suppose that the last setup for the
item occurs in period # (# < v) in the v-period
subproblem of parent item 4 The change in the
current disassembly schedule 1s done as follows:

Xp =20, Xyand X, =0 fort =utl, v

Then, this change results in the changes of the
inventory levels of (parent) item & and its child items.
Also, it may result in backlogging, 1.e., an infeasible
solution. This requires methods to check the
feasibility of the new disassembly schedule and to
calculate the new inventory levels of the correspond-

ingliﬁ?mf)roposition given below describes the
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feasibility condition for the new disassembly
schedule obtained by the method to change the
current disassembly schedule.

Proposition 1. For a given disassembly schedule of
problem [F], a new disassembly schedule of (parent)
item k, obtained by the method to change the curvent
disassembly schedule, is feasible if

X=X Xy <lu fort=wutl, . v-1

Proof: The new inventory level of item k, I}, for ¢t =
u,..., v, if the last setup for the v-period subproblem
1s done 1n period #, can be calculated as follows.
(The others remain the same.)

Fort=u
Do =t V2 oy e X ety — X =T —(X0, X;m)
Fort=u+1,...,v1,
Iy =leea + 2 g @i X oy
= Tg1 ~ (X = X X D X e @ X
=1~ (Xh 2 LX)
Fort=v,
Iy =Ipya + Z_;eqf)(k) e .X_],V*.EJ
=l T2 oy A X oy,

Then, the feasibility condition follows from I, =0
fort=y5..,t1. W

Xy, =1,

Also, we explain the method to calculate the
mventory levels after the disassembly schedule of
parent item k 1s changed. Note that the change in the
disassembly schedule of parent item & affects the
mventory levels of the item itself and its child items.
First, the new inventory level of parent item & can be
calculated as follows:

Ip =Tp—(Xp 2 X)) fort=u. w1,
I =1, fort=1,..,u-1,v,...,T

E

The above equations result from the proof of
Proposition 1. Second, the new inventory levels of
the child items can be calculated using the following
proposition. Note that the benefit of this method is
that it can significantly reduce the computation time
to calculate the new inventory level without
recalculating the inventory levels of all items.

Proposition 2. The inventory level (I.) of each
child item i, i € H(k), after the disassembly schedule
of item k is changed according to the method to
change the current disassembly schedule is

=T tag - (Xh - Z725 Xy)
forall t = u+i,...., v+l -1,
Io=I, forallt=1,.  utl-1,v+i,...,
where H(k) denotes the set of children of item k.

T

E
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Proof: For each child item i of a parent item %, 7
H(k), the new inventory level (/) in each period,
after the last setup for the v-period subproblem of the
parent item & is done in period u (1 < v), can be
calculated as follows.

Fort=1....,u+ -1, I =1..
Fort=u+1,

Uty = Lot 1 V2 ot er G X sty + O - X = Xy
=1 T2 o @ X e 1, — X )+
(X p, X)) =1y +a. (X —Xu)

Fort=ut+i+1,..  v+i-1,
Ly =1 + 2 jeoiy e @i X jumt; =X

i o
:(Iiifl +Z_;E<I>(t) Xjf —1; XII)_F@G (Xffu f kX;g)
=Ly + a5 - (X5 - T X))
For t =v+i,
I'f,v+lk = I;,v+.lf;c -1 +Zje®(x),j¢fc aﬂ 'Xj,v+fk =L _XI',V+.Ik

Ll +Z  Fed(), 2k oy X Ftle Ty ka 7){1',v+.ik

= II,V-ka .

Then, I} =1, fort=v+4+1,....7 N

According to the method to change the current
disassembly schedule, we can see that there are v
altematives to change the current disassembly
schedule of parent item £, i.e., the last setup can
occur in any of the periods 1,..., v in the v-period
subproblem. To determine the best one, we specify
the increase and decrease in the total cost. First, the
decrease 1n the total cost can be represented as

Buv) =% k- (X o — 2, X))+ 20,5 - 6( X))

where &) = 1 if » = 0, and 0 otherwise. The first
term represents the decrease in the inventory holding
cost of item & from period # to w1, while the second
one represents the decrease in the setup cost of parent
item & from period -1 to v. Second, the increase in

the total cost can be represented as
vl -1

Cluvi= X X h-ap-(Xo- ZX;gHSk (1-d(Xe.))

re A (k) =+l
where the first term represents the increase in the
mventory holding cost of its child items, while the
second term represents the increase in the setup cost
of parent item & in period u if X}, = 0.

Now, the dynamic program for improving the
current disassembly schedule of parent item % can be
formulated as

[DP1] F,(v)= gﬁafi[max{o, Bu,v)—C(u,v)+F,(u —1)}]

where F{0) = 0. In the formulation, F;(v) denotes the
recursive function for the v-period subproblem for
parent item k. This function consists of the decrease
(B(u, v)) and increase (C(u v)) 1in total cost occurred
when the last setup is done in period u, and the



recursive function for the (1—1)-period subproblem.

Now, the look-ahead check 1s explained. As stated
earlier, the look-ahead check i1s done to consider the
cost changes of other items affected by changing the
current disassembly schedule. Suppose that the last
setup of parent item & is done (fixed) at period u in
the v-period subproblem. Then, the disassembly
schedule of item k& and the inventory levels of item &
and its child items can be calculated using the
methods described earlier. Also, the set of items
affected by changing the disassembly schedule of
item & is specified (denoted by O(k)), and then, the
new disassembly schedules of each of the items in
O(k) can be calculated using [DP1]. Finally, the
change in the total cost for item & that includes the
cost change of the set of items, i € O(k), can be

represented ARy v)— Clur,v) + Trcom

where 4, denotes the maximum cost decrease of item
i calculated after fixing the last setup period of item &
to . Note that 4; can be obtained by solving [DP1].
Now, [DP1] can be reformulated as follow.

[DP2] I:(v) :ﬁm—m{Q Buw-Cuvi+ eg(]k)/l +Ik(u—1)H

where L, {0) = 0. Based on [DP2], the best new
disassembly schedule of the parent item & can be
obtained by solving each subproblem recursively,
starting from period 1 and ending at period T.

The following procedure summarizes the
improvement algorithm using [DP2].

Procedure. (Improvement)

Step 1. Let the current solution be the disassembly
schedule obtained in the first phase (the LP
relaxation heuristic).

Step 2. For each parent item, do the following steps:

1) Set k=1 (Start from the root item 1).

2) Solve the following dynamic program in
forward direction (starting from period 1
and ending at period T), and find the new
disassembly schedule of item £.

Lk(v):max{max{o,B(u,v)—C(u,v)+ > AI+L{(H_DH
1=i=y te(k)
where L, {T) = 0. Here, if the new
disassembly schedule makes an
improvement, i.e., L{T) > 0, save the new
disassembly schedule.

3) Set k= k+1. If k < i (the index for the first

leaf item), go to (2). Otherwise, go to Step 3.

Step 3. £ L{T)= 0, for all parent items, k= 1,..., i
1, 1.e., no further improvements can be made

for all parent items, stop. Otherwise, go to
Step 2.
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5. Concluding Remarks

We considered the disassembly scheduling problem,
which is the problem of determining the disassembly
schedule of used products while satisfying the
demands of their individual parts or components over
a given planning horizon. The case of multiple
product types and parts commonality 1s considered
for the objective of mimimizing the sum of setup,
disassembly operation, and inventory holding costs.
To solve the problem, a two-phase heuristic is
suggested 1n this paper, in which an initial solution is
obtained using a linear programming relaxation
approach, and then it is improved using a dynamic
programming approach and a look-ahead check.

Although the results are not reported in this paper
(due to the space limitation), a case study on end-of-
life inkjet printers was performed, and the results
show that the heuristic can give near optimal
solutions within short computation time.
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