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Abstract

In this paper, we consider the Ring Loading Problem
with integer demand splitting (RLP). The problem is
given with a ring network, in which a required traffic
requirement between each selected node pair must be
routed on it. Each traffic requirement can be routed in
both directions on the ring network while splitting each
traffic requirement in two directions only by integer is
allowed. The problem is to find an optimal routing of
each traffic requirement which minimizes the capacity
requirement. Here, the capacity requirement is defined
as the maximum of traffic loads imposed on each link
on the network. We formulate the problem as an integer
program. By characterizing every extreme point solution
to the LP relaxation of the formulation, we show that
the optimal objective value of the LP relaxation is equal
to p or p+0.5, where p is a nonnegative integer. We also
show that the difference between the optimal objective
value of RLP and that of the LP relaxation is at most 1.
Therefore, we can verify that the optimal objective value
of RLP is p+1 if that of the LP relaxation is p+0.5. On
the other hand, we present a strengthened LP with size
polynomially bounded by the input size, which provides
enough information to determine if the optimal
objective value of RLP is p or p+1.

1. Introduction

In this paper, we consider the Ring Loading
Problem with integer demand splitting (RLP). The
problem is given with a ring network, in which a
required traffic requirement between each selected node
pair must be routed on it. Each traffic requirement can
be routed in both directions on the ring network while
splitting each traffic requirement in two directions only
by integer is allowed. The problem is to find an optimal
routing of each traffic requirement which minimizes the

capacity requirement. Here, the capacity requirement is
defined as the maximum of traffic loads imposed on
each link on the network.

RLP was previously studied by Liese [3], Shyur et
al.[5]and Lee and Chang [1].  They proposed heuristic
algorithms and have not mentioned the computational
complexity. Vachani et al.[7] recently presented a
polynomial time algorithm for RLP. The complexity of
their algorithm is O(#*) , where # is the number of
nodes(links) on a cycle. Myung [4] gave an O(n|K |)-
time algorithm, where | X | is the number of selected
node pairs. Very recently, Wang et al. [6] presented
O( K |) - time algorithm, if | X |[=#® for some small
constant € > 0.

Since RLP can be solved in polynomial time, it 1s
natural to ask if there is a linear program whose number
of variables and constraints is bounded by a polynomial
function of the size of a given instance of RLP, and
gives an optimal solution to RLP. In this paper, we try
to give an answer to an interesting question which is
closely related to the above question.

We first present an integer programming
formulation of RLP in section 2. In section 3, we show
that z;, is equal to p or p+0.5, where z,, is the
optimal objective value of the LP relaxation of the
formulation and p is a nonnegative integer. We also
show that zg,»,—2z;, <1 by constructing a feasible
solution to RLP, whose corresponding objective value
18 less than or equal to LZLPJ+1, from an optimal

extreme point solution to the LP relaxation which has
fractional coordinates, where zp,, 1s the optimal

objective value of RLP. Therefore, it is clear that
Zprp =| zpp | if z;p is equal to p+0.5, where p is a
nonnegative integer. On the other hand, if z;, 1s equal
to p, then either zp;, =2, Or zgp=2;p+1. Does
there exist an LP which can tell if zp,=2z;, or
Zpip = Z;p+1. We give an affirmative answer to this

question in section 4. Finally, we give concluding
remarks in section 3.

2. Formulation of the Problem
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The Ring Loading Problem with integer demand
splitting (RLP) is defined on a ring G =(V,E) with
F={L2,K,vt and E={(12),K,F-1Lv), D}
The followings are the additional notations and
definitions to be used in the formulation of RLP.

K : set of selected node pairs (commodities),
oy, d; : two nodes of a commodity &, for each kK,

where o, <d,.

# o traffic requirement of a commodity &, for each
k € K, assumed to be a positive integer,

B set of links which are used by the clockwise path
of k, for each kekK R ie.,
{000 11, (0p +10p +2). K, (dp — 1.} ),

P ¢ set of links which are used by the counter-

clockwise path of k, foreach ke K ,ie ,E\F/.
x; © the quantity of traffic requirement of commodity &
which are routed in the clockwise direction, for each
kek.

If we route x, units of traffic requirement of
commodity k in the clockwise direction, for each
keK , (5—x;) units are routed in the counter-

clockwise direction. Therefore, we can formulate RLP

as follows :
RLP)min z
st. xp <, Vhek,

unt+ ¥ (h-x)<z, Veek,

&
{keKleeR} {keKleer }
x; nonnegative integer, vk ek .

For ease of later expositions, let us define
I,:—z4+ %  x- X, =R,
{kekleeR"} {keKleer}

where R, =— Y # ,andlet L (x,z) be the left-
{keKleeR }

hand-side of I,.
the above formulation of RLP which corresponds to the
link e, forall e E. Fora feasible solution (x* z%),
the value of the left-hand-side of I, is denoted by
L (x*, 27%).

In the next section, we characterize extreme point

solutions of the linear programming relaxation of (RL.P)
and analyze the strength of it.

Note that, I, is the inequality of

3. Analysis of the LP Relaxation
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Let (LP) be the linear programming relaxation of
(RLP), that 1s, (RLP) without integrality restrictions.
Let P be the set of feasible solutions to (LP) and (¥,z)

be an extreme point of P. Let us define EQ(x,z) be
the set of defining inequalities of P which are satisfied
at equalities by (x,7)
and Ex,7)={ecE|L.(X,7)=R,}. Further,
K(x)={keK|0<X, <n} Then by
substituting the variables ¥, , ke K\ K(x) into each

define

inequality of EQ(x,z), we can obtain the following

system of linear equations :

x =R . VecEEZ) (1)

—-Zz+ Xy — P
{keklesF }

D
{keklecE"}
where R, is the updated right-hand side.

Let B be the left-hand side coefficient matrix of (1) and
let & be the right-hand side vector of (1). After
eliminating redundant equations, we can assume that B
is an m by m nonsingular integral matrix and b is an m
by 1 integral vector. Let (B : l:) be the upper-
triangular matrix obtained by applying Gaussian
elimination procedure to (B :5). We call an integer ¢

1s even (odd) if the absolute value of ¢ is even (odd),
from now on.

Proposition 1. (é : I;) has the following structure.

i) Each element of the first row ofé is either 1 or -1,
each nonzera element of the other rows of B is cither
2or-2, and b isan integral vector.

if) If all elements of b are either even or odd, b is

even, foreach 2<i<m.
Proof. Referto Lee[2] B

By using proposition 1, we can characterize every
extreme point of P as follows.

Proposition 2. Let (x,zZ)€ P be an extreme point
of P, then :

X, =04 /2, forallkek,
where [, is a nonnegative integer which is less than
oregqualto 2r .

Proof. Tt is clear from i) of proposition 1. B
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Now, we will analyze the strength of the bound of
(LP). Let z;r be the optimal objective value of (LP)

andlet z,;» be the optimal objective value of (RLP).

Proposition 3. Given optimal extreme point solution
(x* z;p) to (LP), we can construct a feasible solution

(x',z"yto (RLF) such that z'< LZLPJ+1.
Proof. Refer to Lee[2]. B

Theorem 1. zp,,—z;, <land the bound is tight.
Proof. 1t is clear that =zp,—z;,<1
proposition 3. Consider an instance of RLP defined on
a 4-nodes cycle with only two commodities { node 1 —
node 3, node 2 — node 4) whose demands are all equal
to 1. In this case, z;=1 and zp;»=1. So, the
bound is tight. B

from

4. A Strengthened LP Formulation

For a pair of inequalities 7, and [, if exactly one
of R, and R, is an odd number, we can obtain the

following valid inequality .- to (RLP):

+R
Iy:—z+ ¥ X, — kaLMJ’
{keKle,feF'}  (keKle.JeR} 2
where I,-(e,z)=(L,(x,2)+L,(x,z})/2. Note that
the right-hand-side of I, is equal to

(R, +R;)/2-05 and I, =1,.

For ease of exposition, let O ={(e, f)|exactly one
of R, and R, is odd, for each pair of e, feE}.
Let (ILP’) be the LP relaxation of (RLP) obtained by
adding all I, (e.f)eQ to (LP), which yields a
stronger LP-relaxation of (RLP) than (LP). We also use
EQ(x,7) to denote the set of inequalities of (LP)
which are satisfied at equalities by a feasible solution

(%.7) to(LP).

Proposition 4. Let (x,z) be a feasible solution to
@LP). If 1,€EQ(x.7) and I, €EQ(X.T), then
both R, and R, are either odd or even.

Proof. Suppose that I ,eEQ(x.z) and
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I, e EQ(x,z), but exactly one of R, and R, isodd

Then,
(R, +R;)

Ly @D =0 @D+ E 2=

- \‘(Rz +Rf)J’
2

hence (¥.Z) violates I, . ®

Proposition 5. Let («% 7% be an extreme point
solution to (LP") withz*=z;,. If I, € EQ(x* 7%},
Jor some (e, )€ Q. then exactly one of I, and I,
isin EQ(x™ z%).

Proof.  Suppose that [, e EQ(x*z%) .
bothof I, and I, cannotbein EQ(x*z*). Now,
suppose that I, ¢ EQ(x* 7%) and [, ¢ EQ(x*z%).

Then the followings hold :
L(x*2%+s5, =R,, L, (x*2%+s, =R, and

Clearly,

Lgf(x*,z*):L(Re+Rf)/2j,where 5,>0 ands; >0.

From the construction of
I, R L(x.2)=L,(x2)+I(x) and
Lo(x,2)=L,(x,2)-1(x), where
I(x)= ¥ X, — ¥ X, .

(keKleeE feF}  {keK|ecE feR')
Thatis, L, (x*, 2%) +5, = L (x%,29)+1(x¥) +5, = R,,
Lo(x®, 2845, = L (x%, 2% - 1(x®) +5, =R,
Lr(x® 2%+ (s, +5,)/2=(R, +R)/2.
Therefore, s, +s,=1, where 5, >0 and 5,>0.

We now prove a claim.

Claim 1. 7, ¢ EQ(x*,z%), forallge E\{e,f}.

Proof. Suppose /I, € EQ(x¥, z%) for some g € E'\{e, f}.
Without loss of generality, assume that R, is odd and
R

. 1s even, then, since O<s, <1,

L, (7% 2%) = (L (e 2%+ L, (%, 2%)) /2 = @ - %"
CRAR) 1| R AR,
2 27 2

Therefore, (x*z%) violates I.,. ¢

Note that, by the assumption, (x* z% is also an
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optimal solution to (LP). By claim 1, L (x* z¥)<R_,
for all e<E . Therefore, there exist a feasible
solution (x*z") to (LP)suchthat 7' < z*, whichisa

contradiction. B

The following theorem characterizes every optimal
extreme point solution to (LP”).

Theorem 2. [f there exists a feasible solution to
(RLP) whose objective value is equal to z;p, then an

optimal extreme point solution (x,Z) to (LP) is
integral with £ =z;,. Otherwise, (X,Z) has possibly
Sractional coordinates with 2> z;p.

Proof. Suppose that there exists a feasible solution to
(RLP) whose objective value 1s equal to z,,. Then,

there exists an optimal extreme point solution (£,2) to
(LP) with Z=1z,,.
that (x,z) is integral.

Therefore we have only to prove

By Proposition 4, R,’s have
Also by
Proposition 5, if I,- € EQ(¥, %), exactly one of [,
and I, is in EQ(%.2) .
I, € EQ(%,2) and

the same parity, for all I, e EQ(X.Z) .

Let us assume that
1, EQ(x, 2). Then,
L;(%2)=R;—1 Also note that I,; is equal to an
inequality (7, +1;)/2, where I, :L.(x,2)<R -1
Therefore, (x,z) should be the unique solution to the

following system of linear equations :

x, =#,forall keK suchthat %, =r,

x; =0, forall keK suchthat ¥, =0,
L(x,z)=R,, forall I, e EQ(x,2), 3)
Li(x,2)=R; -1 , for all [, cEQ(2) and

I cEQ(,2). “4

Note that the right-hand-side values of all equations in
(3) and (4) have the same parity. Now, consider some
keK such that X, =5 . Note that x, appears in
all equations in (3) and (4) with the coefficients 1 or -1.
Therefore, the right-hand side values of all equations in
(3) and (4) after substituting x, =# into them also
have the same parity. By repeating the same process,
finally, we can obtain a system of linear equations
similar to (1) with the right-hand sides of the same
parity. Now, by Proposition 1, (x.Z) is integral
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This completes the first part of this theorem.
Now, suppose that zg;z>z;,. Then Z>z;,,

otherwise, as in the first part of this proof, (x,z) isan
integral feasible solution to (LP”) with Z= z;,, which

contradicts zp;» >z;,. W

From the above theorem, (LP') either gives an optimal
integral solution to (RLP) if zz;=1z;p or proves

Zpzp > Z;p When z;p=p for some nonnegative
integer p. Moreover, since zp;p —2z;p <1, it is clear
that zp;p—2z;m <1, thus, zp;, :(zuﬂ, where z;p
is the optimal objective value of (LP"). The number of
nequalities I,-.(e.f)eQ , is al most [VE|/4 .
(LP) has

|V |+|V*|/4 constraints.

Therefore, | K| variables and at most

5. Concluding Remarks

In this paper, we present a strengthened linear
program, with size polynomially bounded by the input
size, which provides enocugh information to determine
the optimal value of (RLP). We think that it is an
interesting and worthwhile subject to study the
complete inequality description of the convex hull of
feasible solutions of (RLP).
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