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Abstract

We present a unifying framework to establish a
lower-bound on the number of semidefinite pro-
gramming based, lift-and-project iterations (rank)
for computing the convex hull of the feasible so-
lutions of various combinatorial optimization prob-
lems. This framework is based on the maps which
are commutative with the lift-and-project opera-
tors. Some special commutative maps were origi-
nally observed by Lovász and Schrijver, and have
been used usually implicitly in the previous lower-
bound analyses. In this paper, we formalize the lift-
and-project commutative maps and propose a gen-
eral framework for lower-bound analysis, in which
we can recapture many of the previous lower-bound
results on the lift-and-project ranks.

1 The Lift-and-Project Meth-
ods.

Let P be any convex subset of the d-dimensional
hypercube [0, 1]d. PI denotes the integral hull of P ,
namely the convex hull of 0-1 vectors of P . The lift-
and-project methods are general procedures which
take P as input and deliver PI as output. In do-
ing so, it is sometimes convenient to homogenize P
to a cone K in Rd+1 by introducing an additional
coordinate which will be referred to as the 0-th co-
ordinate.

K :=
{

λ

(
1
x

)
: x ∈ P, λ ≥ 0

}
, (1)

or P =
{

x ∈ Rd :
(

1
x

)
∈ K

}
. (2)

Accordingly, KI is the homogenized cone of PI .
See Figure 1. It is clear that K is contained in

Figure 1: P , PI , K, and KI .

Q ⊆ Rd+1, the homogenization of [0, 1]d. The cone
Q has a very simple polyhedral structure. Denote
Hi(0) := {x ∈ Rd+1 : xi = 0} and Hi(1) := {x ∈
Rd+1 : xi = x0}. Similarly, for J ⊆ {1, 2, . . . , d},
write HJ(0) :=

{
x ∈ Rd+1 : xi = 0, i ∈ J

}
and

HJ(1) :=
{
x ∈ Rd+1 : xi = x0, i ∈ J

}
. Then, for

each (d + 1 − k)-dimensional face of Q, there is a
set J ⊆ {1, 2, . . . , d} with |J | = k and its partition
J = J0 ∪ J1 so that the face is given as

Q ∩HJ0(0) ∩HJ1(1). (3)

Given a set S, its dual cone is defined as S∗ := {x :
xT s ≥ 0, s ∈ S}. Let L be a linear map. Then, it
is easy to see that

y ∈ (LS)∗ ⇔ LT y ∈ S∗. (4)

It is well known that when S is polyhedral, S∗ is
generated by the vectors determining the facets of
S. Hence, we have

Q∗ = cone{e1, . . . , ed, f1, . . . , fd}, (5)

where ei denotes the ith unit vector and fi := e0 −
ei. Let K1 ⊆ Q and K2 ⊆ Q be convex cones such



that K = K1∩K2. For instance, if K is polyhedral,
then K1 and K2 can be obtained by taking proper
subsystems of the linear systems determining K.
We are ready to define the lift-and-project operators
N0, N and N+ in increasing strength. For Y ∈
R(d+1)×(d+1), consider the conditions:

diag(Y ) = Y e0, (6)
uT Y v ≥ 0, ∀ u ∈ K∗

1 , v ∈ K∗
2 , (7)

where diag : Rd+1 × Rd+1 → Rd+1 maps the di-
agonal elements of the given matrix onto a vector.
Then

M0(K1,K2) :=
{Y = (yij)i,j∈{0,1,...,d} : Y satisfies (6), and (7)}.

Notice that (6) and (7), respectively, can be restated
as follows.

〈Y, fie
T
i 〉

:= trace
(
Y T fie

T
i

)
= 0, ∀ i ∈ {1, 2, . . . , d} , (8)

Y K∗
2 ⊆ (K∗

1 )∗ = K1. (9)

The additional condition

Y ∈ Σd+1,

the (d + 1)× (d + 1) symmetric matrices, (10)

yields the stronger operator

M(K1,K2) := {Y ∈ M0(K1,K2) : Y satisfies (10)}.

An additional positive semidefiniteness constraint

Y ∈ Σd+1
+ , (11)

the (d + 1)× (d + 1) PSD matrices, (12)

gives

M+(K1,K2)
:= {Y ∈ M(K1, K2) : Y also satisfies (12)}.(13)

We use N] ∈ {N0, N, N+}, and M] ∈
{M0,M,M+}, to state definitions and results for
all three operators M0,M,M+ and N0, N, N+ (de-
fined below) respectively:

N](K1,K2) := {Y e0 : Y ∈ M](K1,K2)}. (14)

N](K1, K2) is a relaxation of KI tighter than K.
We have

KI ⊆ N0(K1,K2) ⊆ N(K1,K2) ⊆ N+(K1,K2) ⊆ K.
(15)

When K1 := K, we can use for K2 any convex cone
such that K ⊆ K2 ⊆ Q. While the choice K2 := K
provides the tightest relaxations, the simplicity of Q

(especially of Q∗) allows the usage of more elegant
and simpler mathematical tools. Moreover, choos-
ing K2 := Q yields a sequence of clearly tractable
relaxations from a computational complexity point
of view as we explain below. In this case, by (5),
(9) is equivalent to

Y ei, Y fi ∈ K, i ∈ {1, 2, . . . , d} . (16)

For this case, we will adopt the following notation:

M](K) := M](K, Q), N](K) := N](K, Q). (17)

Clearly, N] operators can be applied iteratively:

K := N0
] (K), N t

] (K) := N](N t−1
] (K)) (18)

for t ∈ {1, 2, . . .}.

2 M]- and N]-commutative
maps.

Definition 1 Suppose L : Rd+1 → Rd+1+k is a
linear map. Then, L is said to be M]- and N]-
commutative, respectively, if LM](K1,K2)LT ⊆
M](LK1, LK2) and LN](K1,K2) ⊆ N](LK1, LK2)
for every pair of closed convex cones K1,K2 ⊆ Q
(see Figure 2).

Kj -L LKj

?

M]

?

M]

M](K1, K2)
¨
§ -L · LT M](LK1, LK2)

¨ ¥
¦¾

M]-commutativity

Figure 2: M]-commutative diagram.

Let ẽi’s and f̃i’s be the extreme rays of the dual
cone Q̃∗ of the (d + 1 + k)-dimensional cone Q̃
spanned by the (d + k)-dimensional hypercube.

Theorem 2 A linear map L : x ∈ Rd+1 7→ x̃ ∈
Rd+1+k is M]–commutative if and only if, for every
j ∈ {1, 2, . . . , d + 1 + k},

LT f̃j ẽ
T
j L ∈ span

{
fie

T
i : i ∈ {1, 2, . . . , d}} .(19)

Proof: We will prove only the sufficiency. As-
sume Y ∈ M](K1,K2). We first show that (19)
guarantees LY LT ∈ M](LK1, LK2). First, notice
that (7), (10), and (12) are true for LY LT regard-
less of (19): (10) and (12) are clearly satisfied by
LY LT . Regarding (7), due to (4), w̃ ∈ (LKj)∗ if



and only if LT w̃ ∈ K∗
j for j ∈ {1, 2}. Therefore,

Y ∈ M](K1,K2) implies 0 ≤ (LT ũ)T Y (LT ṽ) =
ũT LY LT ṽ for any ũ ∈ (LK1)∗ and ṽ ∈ (LK2)∗.
It remains to show (19) guarantees (6) for LY LT .

But, by (8) the latter is equivalent to that for all
j ∈ {1, 2, . . . , d + k},

trace
(
LY LT f̃j ẽ

T
j

)
= trace

(
Y (LT f̃j ẽ

T
j L)

)
= 0.

(20)
From (19), LT f̃j ẽ

T
j L =

∑
i λifiei

T for some λi,
i ∈ {1, 2, . . . , d}. Since Y satisfies (8), this implies
(20).

Corollary 3 If, in addition, L is invertible, then
the equality holds: LM](K1, K2)LT = M](LK1,
LK2).

Corollary 4 If L and L′ are M]-commutative
maps, then their composite, if defined, is also M]-
commutative.

Lemma 5 [5] If L is M]-commutative and LT e0 is
parallel to e0, then L is also N]-commutative.

Corollary 6 [5] If L : Rd+1 → Rd+1 is
an automorphism of Q, namely a linear map
such that LQ = Q, then for every pair
of closed convex cones K1,K2 ⊆ Q, we
have LM](K1,K2)LT = M](LK1, LK2) and
LN](K1,K2) = N](LK1, LK2).

A motivation of Definition 1 is that some pre-
vious lower-bound results rely on M]- and N]-
commutative linear maps that are not necessarily
invertible.

• Embedding L : x ∈ Rd+1 7→ x̃ ∈ Rd+1+k so
that, for some 0 ≤ l ≤ k,

x̃i :=





xi for i ∈ {0, 1, . . . , d} ,
0 for i ∈ {d + 1, . . . , d + l} ,
x0 for i ∈ {d + l + 1, . . . , d + k} .

(21)

• Duplication L : x ∈ Rd+1 7→ x̃ ∈ Rd+1+k so
that, for a subset {j1, . . . , jk} ⊆ {1, 2, . . . , d},

x̃i :=
{

xi for i ∈ {0, 1, . . . , d} ,
xji−d

for i ∈ {d + 1, . . . , d + k} .
(22)

• Flipping is an automorphism that maps ej 7→
fj , fj 7→ ej for each j ∈ J ⊆ {1, 2, . . . , d}.

In all of the above examples, one can check
that for every j ∈ {1, 2, . . . , d + k}, there is i ∈
{1, 2, . . . , d} such that

{
LT ẽj , L

T f̃j

}
= {e0, 0} , or {ei, fi} , (23)

that is sufficient for (19). In fact, (23) describes a
fairly broad class of linear maps that are both M]-
and N]-commutative.

Corollary 7 Suppose L satisfies the following con-
ditions: 1) The first row is e0, and 2) the rest
are either, 0, e0, ei, or fi for i ∈ {1, 2, . . . , d}.
Then any positive multiple of L is both M]- and
N]-commutative.

Now, we discuss one of the key properties used in
our framework for lower-bound analysis.

Lemma 8 Let K ⊆ Rd+1 and K̃ ⊆ Rd+1+k, re-
spectively, be the homogenizations of the convex sets
P ⊆ [0, 1]d and P̃ ⊆ [0, 1]d+k. Assume L : Rd+1 →
Rd+1+k is an N]-commutative map. If L is feasi-
ble, namely LK ⊆ K̃, then for every t ≥ 0, we have
LN t

] (K) ⊆ N t
] (LK) ⊆ N t

] (K̃).

Proof: By induction on t using the feasibility of
L.

3 Lower Bound Analysis.

3.1 N]-ranks

Let Π be a 0-1 integer programming problem with
the instances ι. Denote the input size of ι by 〈ι〉
and Πn := {ι ∈ Π : 〈ι〉 ≤ n}. The rank r is a
function on the quadruples (N], Π, P, n), where P is
a initial relaxation scheme of the instances ι of Π.
For each ι, let P (ι) ⊆ Q be the relaxation obtained
by P applied to ι, and `ι the minimum ` such that
N `

] (P (ι)) ⊆ PI(ι), the integral hull of P (ι). Then,
the rank function r is defined as

r(N], Π, P, n) := max{`ι : ι ∈ Πn}. (24)

When Π and n are clear from the context, we will
simply write r](P ) := r(N], Π, P, n). Obviously,
r](P ) is a measure of efficiency of the lift-and-
project methods for problem Π. However, find-
ing an exact value of r is usually a difficult task.
Therefore, the analyses are focused on finding good
lower and/or upper bounds on r](P ). The former is
equivalent to finding an instance ι ∈ Πn, a suitable
point v(n) and the largest `n and such that v(n)
lies in the gap between PI(ι) and N `n

] (P (ι)): v(n)
∈ N `n

] (P (ι))\PI(ι). Then, clearly r](P ) ≥ `n + 1.
For lower-bound analysis on various combinato-

rial optimization problems, see also [1, 2, 3, 4].

3.2 Construction of v(n)

We denote by ē the vector of all ones of appropriate
size. Suppose v ∈ Rd

+ maximizes ēT x (we assume
for this discussion that the underlying combinato-
rial optimization problem is a maximum cardinality
problem) over Nk

] (P ). Thus, if Nk
] (P ) is invariant



under all permutations Sd (represented as permu-
tation matrices), i.e.,

∀R ∈ Sd : x ∈ Nk
] (P ) ⇐⇒ Rx ∈ Nk

] (P ).

Then (
1
|Sd|

∑

R∈Sd

Rv

)
∈ Nk

] (P ),

by the convexity of Nk
] (P ). Therefore, we can as-

sume v = αē for some α ≥ 0 (we used ēT Sv =
ēT v,∀R ∈ Sd).

This kind of technique was used in previous
works. It turns out, we can summarize conve-
niently, via M]-commutative maps, many of the
lower-bound analyses available in the literature.
They rely on a mathematical induction on the size
(suitably defined) of the instances. To facilitate the
presentation, we only consider the instances that
are symmetric with respect to the variables. Thus,
we consider essentially a unique instance of each
size. Let sk be the size of the instance at the k-th
induction step. For instance, sk can be the number
of edges, nodes, or variables. Denote by Psk

and
Ksk

, respectively, the initial relaxation and its ho-
mogenization for Πsk

. For simplicity, we will write
M](sk) := M](Ksk

) and N](sk) := N](Ksk
).

3.3 Unifying approach

qv(k) ∈ Nk
] (sk)

-Lp · LT
p

qwp ∈ Nk
] (sk+1)

m
Yk ∈ Mk

] (sk).
m

W p = LpYkLT
p

∈ Mk
] (sk+1)

?

induction
¡

¡
¡¡ª

proof

qv(k + 1) ∈ Nk+1
] (sk+1)

m
∃? Yk+1 ∈ cone{W p}.
s.t Yk+1ei, Yk+1fi ∈ cone{wp}.

Figure 3: Unifying approach

The unifying approach focuses on constructing
in a recursive manner, the sequence of proofs Yk ∈
Mk

] (sk) such that v(k) = Yke0 via appropriate M]-
commutative maps Lp. See Figure 3.

Scheme 9 Using the symmetry of ι, P , and v(k),
construct {Yk} so that Yke0 = v(k), Yk ∈ Mk

] (sk)
and Yk+1 = 1

|S|
∑

p∈S LpYkLT
p ∈ Mk+1

] (sk+1), for
some set of M]-commutative maps {Lp : p ∈ S}.

The M]-commutativity of Lp’s implies that
LpYkLT

p ∈ Mk
] (sk+1) for all p. Thus, the scheme

is based on the intuition that, due to the symme-
try, when LpYkLT

p ∈ Mk
] (sk+1) for p ∈ S then

their convex combination might lie in the smaller
set Mk+1

] (sk+1). See Figure 4.

Figure 4: A schematic illustration of the proof tech-
nique.
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