Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

Sung-Pil Hong
Chung-Ang University

Levent Tunçel
University of Waterloo

Extended Abstract

Abstract

We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by Lovász and Schrijver, and have been used usually implicitly in the previous lowerbound analyses. In this paper, we formalize the lift-and-project commutative maps and propose a general framework for lower-bound analysis, in which we can recapture many of the previous lower-bound results on the lift-and-project ranks.

1 The Lift-and-Project Methods.

Let P be any convex subset of the d-dimensional hypercube $[0,1]^{d} . P_{I}$ denotes the integral hull of P, namely the convex hull of $0-1$ vectors of P. The lift-and-project methods are general procedures which take P as input and deliver P_{I} as output. In doing so, it is sometimes convenient to homogenize P to a cone K in \mathbb{R}^{d+1} by introducing an additional coordinate which will be referred to as the 0 -th coordinate.

$$
\begin{align*}
& K:=\left\{\lambda\binom{1}{x}: x \in P, \lambda \geq 0\right\}, \tag{1}\\
& \text { or } P=\left\{x \in \mathbb{R}^{d}:\binom{1}{x} \in K\right\} . \tag{2}
\end{align*}
$$

Accordingly, K_{I} is the homogenized cone of P_{I}. See Figure 1. It is clear that K is contained in

Figure 1: P, P_{I}, K, and K_{I}.
$Q \subseteq \mathbb{R}^{d+1}$, the homogenization of $[0,1]^{d}$. The cone Q has a very simple polyhedral structure. Denote $H_{i}(0):=\left\{x \in \mathbb{R}^{d+1}: x_{i}=0\right\}$ and $H_{i}(1):=\{x \in$ $\left.\mathbb{R}^{d+1}: x_{i}=x_{0}\right\}$. Similarly, for $J \subseteq\{1,2, \ldots, d\}$, write $H_{J}(0):=\left\{x \in \mathbb{R}^{d+1}: x_{i}=0, i \in J\right\}$ and $H_{J}(1):=\left\{x \in \mathbb{R}^{d+1}: x_{i}=x_{0}, i \in J\right\}$. Then, for each $(d+1-k)$-dimensional face of Q, there is a set $J \subseteq\{1,2, \ldots, d\}$ with $|J|=k$ and its partition $J=J_{0} \cup J_{1}$ so that the face is given as

$$
\begin{equation*}
Q \cap H_{J_{0}}(0) \cap H_{J_{1}}(1) . \tag{3}
\end{equation*}
$$

Given a set S, its dual cone is defined as $S^{*}:=\{x$: $\left.x^{T} s \geq 0, s \in S\right\}$. Let L be a linear map. Then, it is easy to see that

$$
\begin{equation*}
y \in(L S)^{*} \Leftrightarrow L^{T} y \in S^{*} . \tag{4}
\end{equation*}
$$

It is well known that when S is polyhedral, S^{*} is generated by the vectors determining the facets of S. Hence, we have

$$
\begin{equation*}
Q^{*}=\operatorname{cone}\left\{e_{1}, \ldots, e_{d}, f_{1}, \ldots, f_{d}\right\}, \tag{5}
\end{equation*}
$$

where e_{i} denotes the i th unit vector and $f_{i}:=e_{0}-$ e_{i}. Let $K_{1} \subseteq Q$ and $K_{2} \subseteq Q$ be convex cones such
that $K=K_{1} \cap K_{2}$. For instance, if K is polyhedral, then K_{1} and K_{2} can be obtained by taking proper subsystems of the linear systems determining K. We are ready to define the lift-and-project operators N_{0}, N and N_{+}in increasing strength. For $Y \in$ $\mathbb{R}^{(d+1) \times(d+1)}$, consider the conditions:

$$
\begin{gather*}
\operatorname{diag}(Y)=Y e_{0} \tag{6}\\
u^{T} Y v \geq 0, \forall u \in K_{1}^{*}, v \in K_{2}^{*} \tag{7}
\end{gather*}
$$

where diag : $\mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1}$ maps the diagonal elements of the given matrix onto a vector. Then

$$
\begin{gathered}
M_{0}\left(K_{1}, K_{2}\right):= \\
\left\{Y=\left(y_{i j}\right)_{i, j \in\{0,1, \ldots, d\}}: Y \text { satisfies }(6), \text { and }(7)\right\}
\end{gathered}
$$

Notice that (6) and (7), respectively, can be restated as follows.

$$
\begin{gather*}
\left\langle Y, f_{i} e_{i}^{T}\right\rangle \\
:=\operatorname{trace}\left(Y^{T} f_{i} e_{i}^{T}\right)=0, \forall i \in\{1,2, \ldots, d\} \tag{8}\\
Y K_{2}^{*} \subseteq\left(K_{1}^{*}\right)^{*}=K_{1} \tag{9}
\end{gather*}
$$

The additional condition

$$
Y \in \Sigma^{d+1}
$$

the $(d+1) \times(d+1)$ symmetric matrices, (10) yields the stronger operator

$$
M\left(K_{1}, K_{2}\right):=\left\{Y \in M_{0}\left(K_{1}, K_{2}\right): Y \text { satisfies }(10)\right\}
$$

An additional positive semidefiniteness constraint

$$
\begin{gather*}
Y \in \Sigma_{+}^{d+1} \tag{11}\\
\text { the }(d+1) \times(d+1) \text { PSD matrices, } \tag{12}
\end{gather*}
$$

gives

$$
\begin{gathered}
M_{+}\left(K_{1}, K_{2}\right) \\
:=\left\{Y \in M\left(K_{1}, K_{2}\right): Y \text { also satisfies (12) }\right\} .(13)
\end{gathered}
$$

We use $N_{\sharp} \in\left\{N_{0}, N, N_{+}\right\}$, and $M_{\sharp} \in$ $\left\{M_{0}, M, M_{+}\right\}$, to state definitions and results for all three operators M_{0}, M, M_{+}and N_{0}, N, N_{+}(defined below) respectively:

$$
\begin{equation*}
N_{\sharp}\left(K_{1}, K_{2}\right):=\left\{Y e_{0}: Y \in M_{\sharp}\left(K_{1}, K_{2}\right)\right\} . \tag{14}
\end{equation*}
$$

$N_{\sharp}\left(K_{1}, K_{2}\right)$ is a relaxation of K_{I} tighter than K. We have
$K_{I} \subseteq N_{0}\left(K_{1}, K_{2}\right) \subseteq N\left(K_{1}, K_{2}\right) \subseteq N_{+}\left(K_{1}, K_{2}\right) \subseteq K$
When $K_{1}:=K$, we can use for K_{2} any convex cone such that $K \subseteq K_{2} \subseteq Q$. While the choice $K_{2}:=K$ provides the tightest relaxations, the simplicity of Q
(especially of Q^{*}) allows the usage of more elegant and simpler mathematical tools. Moreover, choosing $K_{2}:=Q$ yields a sequence of clearly tractable relaxations from a computational complexity point of view as we explain below. In this case, by (5), (9) is equivalent to

$$
\begin{equation*}
Y e_{i}, Y f_{i} \in K, i \in\{1,2, \ldots, d\} \tag{16}
\end{equation*}
$$

For this case, we will adopt the following notation:

$$
\begin{equation*}
M_{\sharp}(K):=M_{\sharp}(K, Q), N_{\sharp}(K):=N_{\sharp}(K, Q) . \tag{17}
\end{equation*}
$$

Clearly, N_{\sharp} operators can be applied iteratively:

$$
\begin{align*}
& K:=N_{\sharp}^{0}(K), \quad N_{\sharp}^{t}(K):=N_{\sharp}\left(N_{\sharp}^{t-1}(K)\right) \tag{18}\\
& \text { for } t \in\{1,2, \ldots\} .
\end{align*}
$$

$2 \quad M_{\sharp-} \quad$ and $\quad N_{\sharp}$-commutative maps.

Definition 1 Suppose $L: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1+k}$ is a linear map. Then, L is said to be M_{\sharp} - and N_{\sharp} commutative, respectively, if $L M_{\sharp}\left(K_{1}, K_{2}\right) L^{T} \subseteq$ $M_{\sharp}\left(L K_{1}, L K_{2}\right)$ and $L N_{\sharp}\left(K_{1}, K_{2}\right) \subseteq N_{\sharp}\left(L K_{1}, L K_{2}\right)$ for every pair of closed convex cones $K_{1}, K_{2} \subseteq Q$ (see Figure 2).

Figure 2: M_{\sharp}-commutative diagram.
Let \tilde{e}_{i} 's and \tilde{f}_{i} 's be the extreme rays of the dual cone \tilde{Q}^{*} of the $(d+1+k)$-dimensional cone \tilde{Q} spanned by the $(d+k)$-dimensional hypercube.

Theorem 2 A linear map $L: x \in \mathbb{R}^{d+1} \mapsto \tilde{x} \in$ \mathbb{R}^{d+1+k} is M_{\sharp}-commutative if and only if, for every $j \in\{1,2, \ldots, d+1+k\}$,

$$
\begin{equation*}
L^{T} \tilde{f}_{j} \tilde{e}_{j}^{T} L \in \operatorname{span}\left\{f_{i} e_{i}^{T}: i \in\{1,2, \ldots, d\}\right\} \tag{19}
\end{equation*}
$$

Proof: We will prove only the sufficiency. Assume $Y \in M_{\sharp}\left(K_{1}, K_{2}\right)$. We first show that (19) guarantees $L Y L^{T} \in M_{\sharp}\left(L K_{1}, L K_{2}\right)$. First, notice that (7), (10), and (12) are true for $L Y L^{T}$ regardless of (19): (10) and (12) are clearly satisfied by $L Y L^{T}$. Regarding (7), due to (4), $\tilde{w} \in\left(L K_{j}\right)^{*}$ if
and only if $L^{T} \tilde{w} \in K_{j}^{*}$ for $j \in\{1,2\}$. Therefore, $Y \in M_{\sharp}\left(K_{1}, K_{2}\right)$ implies $0 \leq\left(L^{T} \tilde{u}\right)^{T} Y\left(L^{T} \tilde{v}\right)=$ $\tilde{u}^{T} L Y L^{\tilde{T}} \tilde{v}$ for any $\tilde{u} \in\left(L K_{1}\right)^{*}$ and $\tilde{v} \in\left(L K_{2}\right)^{*}$. It remains to show (19) guarantees (6) for $L Y L^{T}$.

But, by (8) the latter is equivalent to that for all $j \in\{1,2, \ldots, d+k\}$,
$\operatorname{trace}\left(L Y L^{T} \tilde{f}_{j} \tilde{e}_{j}^{T}\right)=\operatorname{trace}\left(Y\left(L^{T} \tilde{f}_{j} \tilde{e}_{j}^{T} L\right)\right)=0$.
From (19), $L^{T} \tilde{f}_{j} \tilde{e}_{j}^{T} L=\sum_{i} \lambda_{i} f_{i} e_{i}^{T}$ for some λ_{i}, $i \in\{1,2, \ldots, d\}$. Since Y satisfies (8), this implies (20).■

Corollary 3 If, in addition, L is invertible, then the equality holds: $L M_{\sharp}\left(K_{1}, K_{2}\right) L^{T}=M_{\sharp}\left(L K_{1}\right.$, $L K_{2}$).

Corollary 4 If L and L^{\prime} are M_{\sharp}-commutative maps, then their composite, if defined, is also $M_{\sharp-}$ commutative.
Lemma 5 [5] If L is M_{\sharp}-commutative and $L^{T} e_{0}$ is parallel to e_{0}, then L is also N_{\sharp}-commutative.

Corollary $6[5]$ If $L: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1}$ is an automorphism of Q, namely a linear map such that $L Q=Q$, then for every pair of closed convex cones $K_{1}, K_{2} \subseteq Q$, we have $L M_{\sharp}\left(K_{1}, K_{2}\right) L^{T}=M_{\sharp}\left(L K_{1}, L K_{2}\right)$ and $L N_{\sharp}\left(K_{1}, K_{2}\right)=N_{\sharp}\left(L K_{1}, L K_{2}\right)$.

A motivation of Definition 1 is that some previous lower-bound results rely on $M_{\sharp^{-}}$and $N_{\sharp^{-}}$ commutative linear maps that are not necessarily invertible.

- Embedding $L: x \in \mathbb{R}^{d+1} \mapsto \tilde{x} \in \mathbb{R}^{d+1+k}$ so that, for some $0 \leq l \leq k$,

$$
\tilde{x}_{i}:=\left\{\begin{array}{cl}
x_{i} & \text { for } i \in\{0,1, \ldots, d\}, \\
0 & \text { for } i \in\{d+1, \ldots, d+l\} \\
x_{0} & \text { for } i \in\{d+l+1, \ldots, d+k\} .
\end{array}\right.
$$

- Duplication $L: x \in \mathbb{R}^{d+1} \mapsto \tilde{x} \in \mathbb{R}^{d+1+k}$ so that, for a subset $\left\{j_{1}, \ldots, j_{k}\right\} \subseteq\{1,2, \ldots, d\}$,

$$
\tilde{x}_{i}:=\left\{\begin{array}{cl}
x_{i} & \text { for } i \in\{0,1, \ldots, d\}, \tag{22}\\
x_{j_{i-d}} & \text { for } i \in\{d+1, \ldots, d+k\} .
\end{array}\right.
$$

- Flipping is an automorphism that maps $e_{j} \mapsto$ $f_{j}, f_{j} \mapsto e_{j}$ for each $j \in J \subseteq\{1,2, \ldots, d\}$.

In all of the above examples, one can check that for every $j \in\{1,2, \ldots, d+k\}$, there is $i \in$ $\{1,2, \ldots, d\}$ such that

$$
\begin{equation*}
\left\{L^{T} \tilde{e}_{j}, L^{T} \tilde{f}_{j}\right\}=\left\{e_{0}, 0\right\}, \text { or }\left\{e_{i}, f_{i}\right\} \tag{23}
\end{equation*}
$$

that is sufficient for (19). In fact, (23) describes a fairly broad class of linear maps that are both $M_{\sharp-}$ and N_{\sharp}-commutative.

Corollary 7 Suppose L satisfies the following conditions: 1) The first row is e_{0}, and 2) the rest are either, $0, e_{0}, e_{i}$, or f_{i} for $i \in\{1,2, \ldots, d\}$. Then any positive multiple of L is both $M_{\sharp-}$ and N_{\sharp}-commutative.
Now, we discuss one of the key properties used in our framework for lower-bound analysis.

Lemma 8 Let $K \subseteq \mathbb{R}^{d+1}$ and $\tilde{K} \subseteq \mathbb{R}^{d+1+k}$, respectively, be the homogenizations of the convex sets $P \subseteq[0,1]^{d}$ and $\tilde{P} \subseteq[0,1]^{d+k}$. Assume $L: \mathbb{R}^{d+1} \rightarrow$ \mathbb{R}^{d+1+k} is an N_{\sharp}-commutative map. If L is feasible, namely $L K \subseteq \tilde{K}$, then for every $t \geq 0$, we have $L N_{\sharp}^{t}(K) \subseteq N_{\sharp}^{t}(L K) \subseteq N_{\sharp}^{t}(\tilde{K})$.
Proof: By induction on t using the feasibility of L.

3 Lower Bound Analysis.

$3.1 \quad N_{\sharp}$-ranks

Let Π be a $0-1$ integer programming problem with the instances ι. Denote the input size of ι by $\langle\iota\rangle$ and $\Pi_{n}:=\{\iota \in \Pi:\langle\iota\rangle \leq n\}$. The rank r is a function on the quadruples $\left(N_{\sharp}, \Pi, P, n\right)$, where P is a initial relaxation scheme of the instances ι of Π. For each ι, let $P(\iota) \subseteq Q$ be the relaxation obtained by P applied to ι, and ℓ_{ι} the minimum ℓ such that $N_{\sharp}^{\ell}(P(\iota)) \subseteq P_{I}(\iota)$, the integral hull of $P(\iota)$. Then, the rank function r is defined as

$$
\begin{equation*}
r\left(N_{\sharp}, \Pi, P, n\right):=\max \left\{\ell_{\iota}: \iota \in \Pi_{n}\right\} . \tag{24}
\end{equation*}
$$

When Π and n are clear from the context, we will simply write $r_{\sharp}(P):=r\left(N_{\sharp}, \Pi, P, n\right)$. Obviously, $(21) r_{\sharp}(P)$ is a measure of efficiency of the lift-andproject methods for problem Π. However, finding an exact value of r is usually a difficult task. Therefore, the analyses are focused on finding good lower and/or upper bounds on $r_{\sharp}(P)$. The former is equivalent to finding an instance $\iota \in \Pi_{n}$, a suitable point $v(n)$ and the largest ℓ_{n} and such that $v(n)$ lies in the gap between $P_{I}(\iota)$ and $N_{\sharp}^{\ell_{n}}(P(\iota)): v(n)$ $\in N_{\sharp}^{\ell_{n}}(P(\iota)) \backslash P_{I}(\iota)$. Then, clearly $r_{\sharp}(P) \geq \ell_{n}+1$.

For lower-bound analysis on various combinatorial optimization problems, see also $[1,2,3,4]$.

3.2 Construction of $v(n)$

We denote by \bar{e} the vector of all ones of appropriate size. Suppose $v \in \mathbb{R}_{+}^{d}$ maximizes $\bar{e}^{T} x$ (we assume for this discussion that the underlying combinatorial optimization problem is a maximum cardinality problem) over $N_{\sharp}^{k}(P)$. Thus, if $N_{\sharp}^{k}(P)$ is invariant
under all permutations \mathcal{S}_{d} (represented as permutation matrices), i.e.,

$$
\forall R \in \mathcal{S}_{d}: x \in N_{\sharp}^{k}(P) \Longleftrightarrow R x \in N_{\sharp}^{k}(P) .
$$

Then

$$
\left(\frac{1}{\left|\mathcal{S}_{d}\right|} \sum_{R \in \mathcal{S}_{d}} R v\right) \in N_{\sharp}^{k}(P),
$$

by the convexity of $N_{\sharp}^{k}(P)$. Therefore, we can assume $v=\alpha \bar{e}$ for some $\alpha \geq 0$ (we used $\bar{e}^{T} S v=$ $\left.\bar{e}^{T} v, \forall R \in \mathcal{S}_{d}\right)$.

This kind of technique was used in previous works. It turns out, we can summarize conveniently, via M_{\sharp}-commutative maps, many of the lower-bound analyses available in the literature. They rely on a mathematical induction on the size (suitably defined) of the instances. To facilitate the presentation, we only consider the instances that are symmetric with respect to the variables. Thus, we consider essentially a unique instance of each size. Let s_{k} be the size of the instance at the k-th induction step. For instance, s_{k} can be the number of edges, nodes, or variables. Denote by $P_{s_{k}}$ and $K_{s_{k}}$, respectively, the initial relaxation and its homogenization for $\Pi_{s_{k}}$. For simplicity, we will write $M_{\sharp}\left(s_{k}\right):=M_{\sharp}\left(K_{s_{k}}\right)$ and $N_{\sharp}\left(s_{k}\right):=N_{\sharp}\left(K_{s_{k}}\right)$.

3.3 Unifying approach

$$
\begin{aligned}
& . v(k) \in N_{\sharp}^{k}\left(s_{k}\right) \quad . w^{p} \in N_{\sharp}^{k}\left(s_{k+1}\right) \\
& \text { 凹 } \downarrow \\
& Y_{k} \in M_{\sharp}^{k}\left(s_{k}\right) \xrightarrow{L_{p} \cdot L_{p}^{T}} W^{p}=L_{p} Y_{k} L_{p}^{T} \\
& \downarrow \text { induction } \quad \notin M_{\sharp}^{k}\left(s_{k+1}\right) \\
& . v(k+1) \in N_{\sharp}^{k+1}\left(s_{k+1}\right) \\
& \text { § } \\
& \exists \text { ? } Y_{k+1} \in \operatorname{cone}\left\{W^{p}\right\} \text {. } \\
& \text { s.t } Y_{k+1} e_{i}, Y_{k+1} f_{i} \in \operatorname{cone}\left\{w^{p}\right\} \text {. }
\end{aligned}
$$

Figure 3: Unifying approach
The unifying approach focuses on constructing in a recursive manner, the sequence of proofs $Y_{k} \in$ $M_{\sharp}^{k}\left(s_{k}\right)$ such that $v(k)=Y_{k} e_{0}$ via appropriate $M_{\sharp-}$ commutative maps L_{p}. See Figure 3.

Scheme 9 Using the symmetry of ι, P, and $v(k)$, construct $\left\{Y_{k}\right\}$ so that $Y_{k} e_{0}=v(k), Y_{k} \in M_{\sharp}^{k}\left(s_{k}\right)$ and $Y_{k+1}=\frac{1}{|S|} \sum_{p \in S} L_{p} Y_{k} L_{p}^{T} \in M_{\sharp}^{k+1}\left(s_{k+1}\right)$, for some set of M_{\sharp}-commutative maps $\left\{L_{p}: p \in S\right\}$.
The M_{\sharp}-commutativity of L_{p} 's implies that $L_{p} Y_{k} L_{p}^{T} \in M_{\sharp}^{k}\left(s_{k+1}\right)$ for all p. Thus, the scheme
is based on the intuition that, due to the symmetry, when $L_{p} Y_{k} L_{p}^{T} \in M_{\sharp}^{k}\left(s_{k+1}\right)$ for $p \in S$ then their convex combination might lie in the smaller set $M_{\sharp}^{k+1}\left(s_{k+1}\right)$. See Figure 4 .

Figure 4: A schematic illustration of the proof technique.

References

[1] S. Arora, B. Bollobás and L. Lovász. Proving integrality gaps without knowing the linear program. Proc. 43rd IEEE Symp. FOCS 2002, 313322.
[2] D. Grigoriev, E. A. Hirsch and D. V. Pasechnik. Complexity of semi-algebraic proofs. Elec. Coll. Computational Complexity, revision 3 of report no. 103 (2001).
[3] M. Laurent. Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope. Math. Oper. Res. 28 (2003) 871-883.
[4] M. Laurent. Tighter linear and semidefinite relaxations for max-cut based on the LovászSchrijver lift-and-project procedure. SIAM J. Optim. 12 (2002) 345-375.
[5] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization, 1(2):166-190, 1991.
[6] T. Stephen and L. Tunçel. On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res., 24(1):1-7, 1999.

