[SP-01]

Analysis of light elements by ERD-TOF using 10 MeV Fluorine

J.K. Kim, W. Hong, G.D. Kim, H.J. Woo, H.W. Choi and C.H. Eum Korea Institute of Geoscience and Mineral Resources(KIGAM)

An elastic recoil detection by time of flight(ERD-TOF) system has been performed using 10 MeV ³⁵Cl ion as the probe in typical case of KIGAM. ³⁵Cl ions have many advantages in our case such like large sesitivity, good depth resolution, and fine mass resolution. However, the accessible depth of ³⁵Cl ion is limited to 3000Å since our accelerator has the small terminal voltage of 1.7 MV at the maximum. And the small accessible depth always causes a serious problem to analyze samples having thick film.

To prolong the accessible depth, fluorine ions were used for light element analysis in this work. Simulation for 10 MeV ³⁵Cl ions and ¹⁹F ions resulted in the ranges of 4.8 μm for ³⁵Cl and of 6.5 μm for ¹⁹F in Si wafer. Another calculation showed that the maximum accessible depth of these two species in SiO₂ film were 3000Å for ³⁵Cl and 5500Å for ¹⁹F. Recoil cross sections of ¹⁹F is reduced to 10 % for H atom and 16 % for Si atom with respect to it of ³⁵Cl. A LiNiVO₄ film (1000Å) on silicon wafer was measured by both of F-ERD and Cl-ERD. The accessible depth was improved almost twice by just altering the probe ion from ³⁵Cl to F.