AC Susceptibility of High-T_c Superconductor SmBa₂Cu₃O_v

H. Kim, B. Y. Lee, J. H. Lee, Y. C. Kim Pusan National University, Busan, 609-735 Korea

The polycrystalline SmBa₂Cu₃O_y were synthesized by the solid state reaction method. The dependence of AC susceptibility on temperature and applied ac field was studied. The critical temperature T_C is about 92 K. As the ac field is increased, the slope and the value of real part of susceptibility become smaller and the peak position of imaginary part T_P was shifted to a lower temperature with peak broadening. Using Bean's model, we determined intergranular critical current density J_C and obtained 44 A/cm² at 75 K. From the relation of the $J_C(T)=(1-T/T_C)^\beta$, we obtained $\beta=0.8$ and found that the Josephson junction type of the SmBa₂Cu₃O_y is SIS junction type. The peak of the imaginary part shifts to higher temperature with increasing frequency, f. From Arrenius plot, we obtained the activation energy of about 0.96 eV.

keywords: Polycrystalline SmBa₂Cu₃O_{v.} AC susceptibility