¹¹B NMR Study of Vortex Dynamics in MgB₂ Superconductor Kyuhong Lee^a, B. J. Mean^a, K. H. Kang^a, Moohee Lee^{*, a}, B. K. Cho^b a Department of Physics, Konkuk University, Seoul 143-701, KOREA b Department of Materials Science and Technology, GJ-IST, Kwangju, 500-712, KOREA Vortex structure and dynamics for Magnesium-diboride have been studied using pulsed NMR techniques. We have measured spectrum, shift, detuning frequency, and transverse relaxation rate(1/T₂) of ¹¹B NMR for MgB₂ powder from 4 K to the normal state under 1.8 T of external magnetic field. In the superconducting state, the spectrum shows the characteristic field distribution with diamagnetic shift and broad linewidth due to the imperfect penetration of magnetic field. 1/T₂ results have a single peak with small change of the rate contrary to the results of nickel borocarbides. Below 16 K, the shape of T₂ decay changes from Lorentzian to Gaussian. It means that the thermal fluctuation is reduced as temperature decreases and the vortex motion is smaller than nickel borocarbides.