Superconductivity of (Sr_{0.9}La_{0.1})(Cu_{1-x}Ni_x)O₂ Studied by Pressure Dependent Magnetization Measurements

H. C. Kim^{*, a}, M. H. Jung^a, M. H. Kim^a, Min Seok Park^b, Kyung. Hee. Kim^b, Sung-Ik. Lee^b

^a National Research Laboratory for Material Science, Korea Basic Science Institute, Daejeon 305-333, Korea

^b National Creative Research Institute Center for Superconductivity and Department of Physics, Pohang University of
Science and Technology, Pohang 790-784, Korea

The electron-doped infinite-layer superconductor $Sr_{0.9}La_{0.1}CuO_2$ is characterized by the infinitely stacked CuO_2 layers separated only by metallic ions. Since the infinite-layer superconductor(ILS) contains no charge reservoir block between the CuO_2 layers, the distance between the CuO_2 layers is shortest among the cuprate superconductors and a strong coupling between CuO_2 layers and low anisotropy are expected for this material. Thus the ILS is a good candidate material to study the correlation between the CuO_2 inter-layer coupling and superconducting properties. With a small amount of Ni substitution into Cu site, the superconductivity is drastically suppressed resulting in the decrease of T_c from 43 K to 27 K with x = 0.01, which implies the ordering mechanism is conventional for this superconductor. Here we present our study of the superconducting properties of the electron-doped infinite-layer superconductor $(Sr_{0.9}La_{0.1})(Cu_{1.x}Ni_x)O_2$ (x = 0, 0.01) through M(T) and M(H) measurements under hydrostatic pressures up to 10 kbar as well as $\rho(T)$ measurement in magnetic fields up to 9 T and specific heat measurement. Interestingly both samples did not show any noticeable effect of M(T) and M(H) in the superconducting state by pressures studied, possibly implying the CuO_2 inter-layer coupling is already strong enough compared to the effect of pressures up to 10 kbar. We will discuss our results in relation with the superconducting mechanism of the ILS $(Sr_{0.9}La_{0.1})CuO_2$.

keywords: infinite-layer superconductor, Sr_{0.9}La_{0.1}CuO₂, magnetization, pressure effects