Routine Production of [18F]FDG with KIRAMS [18F]FDG Module

Sang Wook Kim*, Min Goo Hur, Seung Dae Yang, Dong Hyun An, In Su Jeong, Hong Suk Chang, Bong Hwan Hong, Tae Keun Yang, Won Taek Hwang, Yu-Seok Kim, and Jong Seo Chai

Cyclotron Application Laboratory, Korea Institute of Radiological & Medical Sciences, Seoul, Korea swkim@kcch.re.kr

1. Introduction

2-[¹⁸F]fluoro-2-deoxy-D-glucose ([¹⁸F]FDG) is widely used radiopharmaceutical for Positron Emission Tomography (PET). The main advantage of PET is early diagnosis in patients with cancer. Recently, installation of cyclotron and PET-scanner are booming in Korea as well as [¹⁸F]FDG production module. As a part of a Regional Cyclotron Installation Project, we optimized our [¹⁸F]FDG production module which will be installed at regional cyclotron center. We have changed the module frame to have a good exterior view and control system to give a convenience and reliance to operator.

2. Methods and Results

The details will be discussed in this section.

2.1 Main Frame

The prototype [¹⁸F]FDG module was put together on an aluminum profile base which is a convenient frame and easy to assemble and dismantle during development. We have designed the frame chassis with 3-dimensional designing tool. We put up a large rear door to archive an easy access to internal parts and maintenance. Main frame was anodized to prevent and reduce the oxidation and scratch during preparation.

Figure 1. [¹⁸F]FDG production module installed in hot cell, KIRAMS. (Ver. 2.1.)

PEEK polymer was used as a tighten material which holds on the glass ware and reaction vial. PEEK is known as an inert material to a variety of chemicals including acid and base.

2.2 Control Program

Programmable Logic Controller (PLC) was used for the last version of [18F]FDG production module with touch pad display panel. There have been some restrictions; for example, hard to change the variables like a process time, temperature and etc. LabView (National Instrument, USA) was adopted as a control tool. Communication between LabView and [18F]FDG production module was extended with I/O card and data cable. The program was also developed on a LabView base which make easy to change variables and acquire the processed data.

Figure 2. Main view of [18F]FDG module software which is designed and programmed using LabView.

Figure 3. Main view of variable settings panel. Time and temperature can be changed.

2.3 [18F] FDG production yield

[18F]FDG production yield with our prototype module was ranging from 38% to 45%. We have upgraded the software and optimized the sequence, evaporation temperature and reaction time. The yield

was increased to ranging from 44% to 53% during test period and maintained $51\pm2\%$ in a routine production, decay uncorrected.

Figure 4. [¹⁸F]FDG production yield with KIRAMS [¹⁸F]FDG module (Ver. 2.1)

3. Conclusion

In conclusion, KIRAMS [18F]FDG production module has been effectively renovated and upgraded from prototype module. From the test production results, KIRAMS [18F]FDG module has been proven to be useful for routine production with KIRAMS-13 cyclotron.

REFERENCES

- [1] Shung, K. K.; Smith, M. B.; Tsui, B. M. W. Principles of Medical Imaging, 1992, Academic Press Inc.
- [2] StÖcklin, G. and Pike, V. W. Radiopharmaceuticals for positron Emission Tomography, 1993, Kluwer Academic Publishers.
- [3] Ter-Pogossian M. M.; Phelps M. E.; Hoffman E. J. and Mullania A. Radiology, 114, 89, 1975.