Effect of Excess TiO2 and Heating Schedule on the Densification of Li2TiO3 Pellet Young Woo Rhee, Kun Woo Song, Jong Hun Kim, Jae Ho Yang, Keon Sik Kim, Ki Won Kang, Yeon Ho Jung Advanced PWR Fuel Development Team, KAERI, Daejon 305youngwoo@kaeri.re.kr #### 1. Introduction Lithium-based ceramics, such as Li_2O , LiAlO_2 , Li_4SiO_4 , Li_2ZrO_3 and Li_2TiO_3 , are being considered as promising solid breeder materials in the blanket of future fusion reactors. Li_2TiO_3 has been recently noticed as the leading candidate because of its prominent tritium release rate at low temperatures between 200 and 400 °C [1,2]. Many studies on manufacturing Li_2TiO_3 pebbles or pellets reported that sintering temperatures are from $1050~^{\circ}\text{C}$ to $1400~^{\circ}\text{C}$ and sintering times are from 1~h to 4~h. Lulewicz [2] reported that a lithium deficient composition shows the improved microstructural stability and small grains during fabrication. However, there are few reports on the detailed densification kinetics of Li_2TiO_3 and the effect of heating rate. In this study, the densification kinetics of TiO_2 added Li_2TiO_3 were measured using a push rod type dilatometer. As a new attempt, the rapid sintering was conducted in order to increase the sintered density and to ensure small grain size. ### 2. Experimental Samples of TiO₂ added Li₂TiO₃ were prepared from Li₂TiO₃ (Kosundo chemicals, 99.9% in purity) and TiO₂ (Degussa, 99.9% in purity) powders. The 0 mol%, 5 mol% and 10 mol% TiO₂-added powder mixtures were wet-milled for 24 h in ethyl alcohol using a polyethylene bottle and high purity zirconia balls. The dried slurry was isostatically pressed under 200 MPa into cylindrical compacts of about 8 mm in diameter and about 10 mm in height. The green densities of compacts were about 58 % of the theoretical density. The shrinkage behavior of 0 %, 5 % and 10 % TiO₂-added compacts in air was studied using a push rod type dilatometer (Netzsch, Dil402C). For microstructural observation, the dried slurry was isostatically pressed under 200 MPa into discs of about 10 mm in diameter and about 2 mm in height. Some of compacts were sintered at 1050 °C for 1 h in air. The heating rate used for the above studies was 5 K/min. Others were rapidly heated at 1300 °C for 10 min and then annealed at 1000 °C for 1 h in air. The heating rate of rapid sintering was about 150 K/min. The sintered density was measured using the water immersion method. The microstructure and crystalline form were determined by optical microscope and XRD, respectively. ## 3. Results Figure 1 shows the shrinkage behaviors of 0 %, 5 % and 10 % TiO₂-added Li₂TiO₃ in air plotted in the form of percentage of shrinkage versus temperature. The onset of shrinkage occurs for 0 % TiO₂-added Li₂TiO₃ at around 1000 °C. Those for 5 % and 10 % TiO₂-added Li₂TiO₃ occur at about 900 °C, which is about 100 °C lower than that for 0 % TiO₂-added Li₂TiO₃. Figure 1. Shrinkage curves for TiO2-added Li2TiO3 compacts. The addition of TiO₂ also results in the remarkable increase in density during isothermal sintering. Figure 2 shows the densities of the samples sintered at 1050 °C for 1 h in air. Since the sintering temperature is well lower than the eutectic temperature of Li₂O-TiO₂ system [3], the possibility of liquid phase sintering due to excess TiO₂ can be excluded. In the absence of a liquid phase, the enhancement of densification by the excess TiO₂ can be accounted by one of the two possible mechanisms [4]. Firstly, the excess TiO₂ may form point defects in the Li₂TiO₃ lattice and thereby increase the diffusivities. Secondly, the excess TiO₂ may significantly retard the grain growth or inhibit abnormal grain growth so that pores are linked to the grain boundaries. Figure 3 shows the results of XRD analysis of the isothermally sintered Li₂TiO₃ pellets with various TiO₂ contents. The composition of 5 % TiO₂-added Li₂TiO₃ is located near the TiO₂-rich phase boundary of β -Li₂TiO₃. The small amount of the excess TiO₂ appears to be form the Li₄Ti₅O₁₂ phase. Small peaks of Li₄Ti₅O₁₂ were observed in the TiO₂-added samples and the peak intensity of Li₄Ti₅O₁₂ became large with increasing the excess TiO₂ contents. In order to increase the sintered density and to ensure small grain size, the rapid sintering was firstly conducted in Li_2TiO_3 system. Usually, the activation energy of the densification is larger than that of grain boundary motion. Therefore, effective densification can be achieved rapid heat treatment at high temperature for short time. The circle in Fig. 2 indicates the density of rapid-sintered 0 % TiO₂-added Li₂TiO₃. The sample was rapidly heated at 1300 °C for 10 min and then annealed at 1000 °C for 1 h in air. The heating and cooling rates of rapid sintering were about 150 K/min. The rapid-sintered sample has a very high density, around 91 % of theoretical density, without TiO₂ addition. This result suggests that the rapid sintering appears to be a possible means of improving the sintered density of Li₂TiO₃. Figure 2. Sintered density of Li₂TiO₃ pellets with various TiO₂ contents. Figure 3. X-ray diffraction patterns of the sintered Li_2TiO_3 with various TiO_2 contents. Square indicates the peak of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ #### 4. Conclusion The densification kinetics of TiO₂ added samples were measured using a push rod type dilatometer. Excess TiO₂ enhance the shrinkage of Li₂TiO₃ compacts and increase the sintered density considerably. The rapid sintering was conducted in undoped Li₂TiO₃ system. The density of rapid-sintered undoped Li₂TiO₃ remarkably increased and is similar to that of TiO₂-added Li₂TiO₃. ### REFERENCES [1] N. Roux, J. Avon, A. Floreancig, J. Mougain, B. Rasneur, S. Ravel, Low-Temperature Tritium Releasing Ceramics as Potential Materials for the ITER Breeding Blanket, J. Nucl. Mater., 233-237, pp.1431-1435, 1996. [2] J. D. Lulewicz, N. Roux, G. Piazza, J. Reimann, J. van der Laan, Behaviour of Li₂ZrO₃ and Li₂TiO₃ Pebbles Relevant to their Utilization as Ceramic Breeder for the HCPB Blanket, J. Nucl. Mater., 283-287, pp. 1361-1365, 2000. [3] H. Kleykamp, Phase equilibria in the Li-Ti-O System and Physical Properties of Li₂TiO₃, Fusion Eng. & Des., 61-62, pp. 361-366, 2002. [4] P. Balakrishna, B. P. Varma, T. S. Krishnan, T. R. R. Mohan and P. Ramakrishnan, Thorium oxide: Calcination, compaction and sintering, J. Nucl. Mater., 160, pp. 88-94, 1988