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1. Introduction

As the nuclear reactor core becomes more complex, heterogeneous,
and geometrically irregular, the method of characteristics (MOC)' is
gaining its wide use in the neutron transport calculations. However,
the long computer times require good acceleration methods. In this
paper, the concept of coarse-mesh angular dependent rebalance
(CMADR)* acceleration is described and applied to the MOC
calculations. The method is based on angular dependent rebalance
factors defined on the coarse-mesh boundaries: a coarse-mesh consists
of several fine meshes that may be (1) heterogeneous and (2) of mixed
geometries with nonregular or unstructured mesh shapes. In addition,
(3) the coarse-mesh boundaries may not coincide with the structural
interfaces of the problem and can be chosen artificially for
convenience. The CMADR acceleration method on the MOC scheme
that enables the very desirable features (1), (2), and (3) above is new

in the neutron transport literature to the best of the authors’ knowledge.

2. CMADR Method
2.1 CMADR Equations
In MOC calculations, for a computational mesh / with flat source
approximation, the outgoing angular flux along a ray / and the average

flux are given as follows:
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where ¢ is the iteration index, m and n are azimuthal and polar
angle indices respectively, 0" is n-th polar angle, L‘m ,; s the track

length of /-th ray of mesh i in (m,n) direction, A/ is the area of the

mesh 7, and 6,’" is the ray spacing of ray / in m-th azimuthal angle.
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Figure 1. A coarse mesh and computational meshes

To obtain the CMADR equations, a coarse mesh (ni,n/) composed
of several computational meshes is considered as in Fig. 1. In this
paper, coarse mesh index (ni,nj) will be omitted for simplicity. Using
Eq. (1), the outgoing angular flux of the coarse mesh along the /~th ray
is given as follows’:
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where u and ¢ are incoming and outgoing edge indices, N, (uf) is
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the number of meshes that affect outgoing edge ¢ along the /-th ray in
incoming edge u. Coefficients T are given as follows:

N, (,0)
T/

m,n = exp(— ZO' ‘moni /Slno ) (4)

81

N, (u,0)

/sin @,
s ")] exp(— Za’,, ,,,,,,,/sin&,,).
o, peit]

i

7 _ [1-exp(-o,L

!
i~mand
mapi-st T

()

Then, x- and y-direction outgoing angular fluxes of the coarse mesh
are given by
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Now the angular dependant rebalance factors are defined on the
coarse mesh boundaries:
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where direction (m.n) is in quadrant y.

The CMADR equations are obtained by replacing iteration indices
in Egs. (6) and (7) to e« +1. introducing rebalance factors, and
summing over each quadrant with weight Wm L, s follows:
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In this paper, we use y:sman cosg, and ﬂ:sman sinqo,,, as

the weights of x- and y-direction edges, respectively.
In addition to Eq. (9) the mesh averaged angular flux can be
expressed as follows:
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The update equations of CMADR are obtained by changing
iteration indices in Eq. (10) to @+ 1, introducing rebalance factors,
and summing over each quadrant as follows:
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The resu]tmg CMADR equations [Egs. (7) and (14)] resemble S,

transport equations and we can solve these equations by transport-like
sweep or the Krylov subspace method*. Also, the coefficients T and P
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are independent of iteration index and flux shape so that these
coefficients can be calculated and stored before the iteration.
Moreover, if modular ray tracing is used in calculation, only several
coefficients are stored according to cell types. In this paper we use the
CRX* code for MOC, which uses modular ray tracing and
BiCGSTAB method to reduce computing time to solve the CMADR
equations.

2.2 Numerical Results

2.2.2 Test Problem I

Test problem I is a homogeneous medium with vacuum boundaries
but the source whose density is 1.0 em“sec”’ is located at the inner
square only as shown in Fig. 2. The problem consists of 16x16
coarse meshes and a coarse mesh contains 24 computational meshes.
The radii of circles are 0.45¢m and 0.35cm. Scattering ratio is 0.999,
angles are (8.4), and the number of rays is 50. Convergence criteria
for high- and low-order calculations are 10°. Table I shows that
CMADR is about 36 times faster in the number of iterations and 11
times faster in computing time than the original CRX code.
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Figure 2. Configuration of test problem |
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Table 1. Results of test problem 1

CRX CRX-CMADR Speedup
Number of iterations 332 9 36.89
Computing time (sec) | 1551.67 134.41 11.54

2.2.3 Test Problem II

Test problem II is a modified Kavenoky’s problem® with vacuum
boundaries as shown in Fig. 3. The problem consists of 7x7 coarse
meshes and a coarse mesh is heterogeneous and contains 24
computational meshes. The size of the coarse mesh is 1.25¢m and
radii of circles are 0.45¢m and 0.35¢m. (8,4) angles and 50 rays per
coarse mesh are used to solve the problem. Convergence criterion is
10, Material properties are given in Table II. Table III shows the
results of calculation. CMADR is 7 times faster in the number of
iterations and 3 times faster in computing times. In this problem, the
fuel and burnable poison (BP) regions have small scattering ratios so
that this diminishes the acceleration effect than in the previous
problems.

Table II. Material properties for test problem II

Moderator Fuel BP
Source denf;ty (em™sec 1.000 0.000 0.000
o(em™) 1.250 0.625 14.000
o, (em’) 1.242 0.355 0.000
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Figure 3. Configuration of test problem II

Table III. Results of test problem II

CRX CRX-CMADR Speedup
Number of iterations 49 7 7.00
Computing time (sec) 42.56 11.94 3.56

3. Conclusions

In this paper, the MOC transport calculation was accelerated by the
coarse-mesh angular dependent rebalance (CMADR) method. The
CMADR method is based on the ADR factor concept, in which the
rebalance factors are angular dependent and defined only on the
coarse-mesh boundaries. The coarse mesh can be overlayed on a
collection of fine meshes that may be heterogeneous and of mixed
geometries with nonregular or unstructured mesh shapes. This is
possible due to the capability of the MOC. Furthermore, the coarse-
mesh boundaries may or may not coincide with the structural
interfaces of the problem and can be chosen flexibly for the
convenience of analysis. The CMADR method on MOC was tested
successfully on several test problems and the results showed that it is
very effective in reducing the number of iterations and computing
time.
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