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1. Introduction

Fourier error analysis has been a standard technique
for the stability and convergence analysis of linear and
nonlinear iterative methods [1,2,3,4]. Though the
methods can be applied to eigenvalue problems too, all
the Fourier convergence analyses have been performed
only for fixed source problems and a Fourier
convergence analysis for eigenvalue problem has never
been reported.

Lee et al proposed new 2-D/1-D coupling methods
and they showed that the new ones are unconditionally
stable while one of the two existing ones is unstable at a
small mesh size and that the new ones are better than
the existing ones in terms of the convergence rate[4].

In this paper the convergence of method A in
reference 4 for the diffusion eigenvalue problem was
analyzed by the Fourier analysis. The Fourier
convergence analysis presented in this paper is the first
one applied to a neutronics eigenvalue problem to the
best of our knowledge.

2. Fourier Analysis for an Eigenvalue Problem

2.1 A 2-D/I-D Coupling Method for an Eigenvalue
Problem

The 2-D/1-D coupling methods described in reference 4
can be directly applied to eigenvalue problems. They
begin with the axially averaged 2-D diffusion equation
which can be written for each plane as in Eq. (1),
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and the radially averaged 1-D diffusion equation for
each axial mesh which can be written as in Eq. (2),
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Method A in reference 4 is to evaluate the TL of the
2-D equation directly from the 1-D solution. The
effective multiplication factor can be updated by
applying the power iteration as follow :
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where W is an arbitrary weighting function.
2.2 Model Problem for the Convergence Analysis
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A model problem was developed to analyze the
convergence of method A applied to an eigenvalue
problem. The model problem used here is a 3-D one-
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group diffusion eigenvalue problem in a homogeneous
finite multiplying medium of N planes with periodic
boundary conditions. It is obvious that the exact
solution to the model problem is ¢ =g (arbitrary
ky=k, =VZ,[Z
assumptions are introduced in order to simplify the
convergence analysis. These are (1) solving the 2-D
problems plane by plane, which means solving them
iteratively in the z-direction and (2) solving the 2-D
problem by a direct inversion of the 2-D operator in a
given plane. The second assumption leads to a zero
radial leakage during the iterations, and simplifies Eqs
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2.3 Fourier Convergence Analysis of Method A

The iterative algorithm of method A applied to the
eigenvalue problem with one inner iteration per outer
iteration can be expressed by the following equations :
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Note that the two-node analytic nodal method was used
to solve the axial 1-D equation. The node average fluxes
on each plane and the continuity condition of the flux
and the net current at the interface of the planes are used
as the constraints for the axial two-node problem. And
also note that a constant weighting function was used to
get Eq. (5b).

By summing the Eq. (5a) for £ =0,1,---,
we get the the following equation :

kG =k, (n>1), (6)

which simplifies the Fourier analysis of method A
applied to the eigenvalue problem.

As we did in the fixed source problem, let’s introduce
66a first order perturbation of the flux. We also

introduce a first order perturbation of 4 in Eq. (5¢)

N=IL,

because it also depends on the iteration step.
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Inserting Eq. (7) into Eq. (5) and dropping the 0(1:2 )
terms yields the following linearized equation :
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By inserting the following Fourier ansatz into Eq. (8) :
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we obtain the following equation :
LZ
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Note that unlike the fixed source problem, only some
discrete values of 4 are allowed in Eq. (9). There are
only N independent basis for the flux because the
dimension of the flux vector is N . We can choose the N
eigenvectors from the lowest mode as the basis. The

flux can be expanded by the N eigenvectors
corresponding to the
eigenmodes A =2mz/(Nh)(m=0,,---N—1) which

satisfy the periodic boundary conditions of the model
problem. Among the eigenmodes, j, =0 forms the

fundamental mode solution of the flux, 1 for this model
problem, and the other modes, 4, (m=12,--N-1),

form the error term of the flux, & . Note that only N —1
r,=Ah (m=12,--N-1) , are
allowed for 7 in Eq. (10). They are 2z/N ,4xz/N , ---,
and 2(N —1)z/N . The spectral radius of the linearized
algorithm of method A for the eigenvalue problem is
given by :
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discrete values,
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3. Results and Discussions

Figure | shows the spectral radius of method A as a
function of the axial mesh size for the model problem
with N =5, D=0.833333,£=0.02, and ¥ 6 =0.019.

The line is the analytic spectral radius obtained by the
Fourier analysis and the dots are the numerical ones. As
indicated, a good agreement is observed between the
analytic and numerical results. The algorithm diverges
at a small mesh size in the eigenvalue problem as it did
in the fixed source problem. It is interesting that the
spectral radius in the eigenvalue problem approaches 1
as the mesh size increases while it approaches zero in
the fixed source problem. It was assumed that N is
infinite in fixed source problem. However, One can also
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show that the spectral radius depends on N and the

minimum value of it approaches 1 as N increases.
Spectral Radius of Method A
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Figure 1. The spectral radius of method A
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4. Conclusion

In this paper the convergence of method A in
reference 4 applied to a diffusion eigenvalue problem
was analyzed by the Fourier analysis. The Fourier
convergence analysis presented in this paper is the first
one applied to a neutronics eigenvalue problem to the
best of our knowledge. The convergence behavior of
method A in the eigenvalue problem is very different
from that in the fixed source problem.
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