과학영재교육원 기초반에 적합한
초등정보과학영재용 교육과정 개발
오성훈, 이재호
경인교육대학교 컴퓨터교육과
5freeday@dreamwiz.com, jhlee@gin.ac.kr

Development of a Curriculum for the Elementary Gifted Children of
Information Science that suitable for The Basic course of Science
Education Institute for the Gifted
Sunghoon Oh, Jaeho Lee
Dept. of Computer Education, Gyeongin National University of Education

요 약
한 개인의 입장에서도 영재성의 발휘는 매우 중요한 일이다. 물론, 민주주의와 인류공명에 크게 이바지하는 입장에서도 영재성의 발휘는 매우 중요한 일이다. 하지만 현재 운영되고 있는 영재교육을 살펴보면 국가에서 영재교육을 해야 한다고 영재교육의 중요성만 이야기했지만 실제로 혜택을 받을 수 있는 교육과정이나 교육내용을 이해하고, 영재교육이 이루어지고 있는 것을 보면 그 내용과 방법은 영재교육을 받은 기관에 따라 매우 다르게 이루어지고 있다. 현재 17개 대학 부설 과학영재교육원에서 영재교육을 담당하고 있다. 하지만 각 대학 부설 과학영재교육원의 교육과정을 보면 대부분 프로그래밍 위주로 교육을 하고 있고, 그 교육과정도 다른 곳에 개발되어 있지 않아서 각 대학 부설 과학영재교육원마다 교육과정 개발에 상당한 어려움을 겪고 있다. 따라서 본 논문에서는 초등학교에서 고등학교 1학년까지의 10학년에 걸쳐 설치되고 있는 정보통신기술교육과 방과 후 특기적성 교육에서 이루어지고 있는 컴퓨터 교육내용, 각 대학 부설 과학영재교육원에서 이루어지고 있는 교육내용을 분석하여 실제로 대학 부설 과학영재교육원에서 활용할 수 있는 초등정보과학영재를 위한 교육과정을 개발하였다. 브랜드 과학영재교육원에서 이루어지고 있는 영재교육이 기초반과 실험반으로 나누어서 운영되고 있는 점을 고려하여, 본 논문에서는 기초반과 실험반 중 기초반에 초점을 두고 연구를 진행하였다.

1. 서 론
우수한 잠재 능력을 가지고 있는 영재들 조기 발견하여 그에 맞는 체계적인 프로그램을 제공하고, 그들의 잠재 능력을 개발시키는 것은 개인의 행복뿐만 아니라 민주국가와 인류공명에 크게 이바지할 수 있는 일이다. 그런 의미에서 세계의 많은 나라들이 일찍이 1950년대 말부터 영재교육에 관심을 갖고 영재교육을 시작해 왔으며, 늦기는 했지만 우리나라도 1999년 12월 28일 국회 본회의에서 '영재교육진흥법'을 통과시키고 2002년 3월 1일부터 본격적으로 영재교육을 실시하게 되었다.
현재 영재교육진흥법에 따라 영재학교로 지정된 곳은 2003년에 문을 연 부산과학영재학교 뿐이지만 영재교육을 담당하는 곳은 전국 초보·중고교에 설치된 영재학급과 서울대 등 전국 17개 대학 부설 과학영재교육원, 시·도 교육청이 고교 등에 위탁 운영하는 영재교육원 등이 대표적이다. 그리고 교육인적자원부는 영재교육진흥법을 발표하고 이에 따라 전체 학생의 0.1%만인 1만명 정도를 대상으로 하는 영재교육을 2007년까지 0.5%선인 4만여명으로 늘리고 일반 초중고교에 설치해 있는 영재교육
프로그램인 영재학급도 현재 36곳에서 170여 곳으로 늘어난다고 한다.

이렇듯 우수한 학생 능력을 갖고 있는 영재를 교육하는 것은 21세기를 준비하는 데 있어서 매우 중요한 일이며 우리나라뿐만 아니라 더 나아가 전 세계의 발전에 크게 기여하는 일이다.

현재 17개 대학 부설 과학영재교육원에서 영재교육을 담당하고 있다. 하지만 각 대학 부설 과학영재교육원의 교육과정을 보면 대부분 프로그램화된 위주로 교육을 하고 있고, 그 교육 과정도 다른 곳에 개발되어 있지 않아서 대학 부설 과학영재교육원마다 교육과정을 개발하는데 상당한 어려움을 겪고 있다.

따라서 본 논문에서는 초등학교에서 과학교 1학년까지의 10학년에 걸쳐 실시되고 있는 정보통신기술 교육내용과 방과 후 특기적성 교육에서 이루어지고 있는 컴퓨터 교육내용, 현재 각 대학 부설 과학영재교육원에서 이루어지고 있는 교육내용을 분석하여, 실제로 대학 부설 과학영재교육원에서 활용할 수 있는 초등 정보과학영재를 위한 교육과정을 개발하고자 하였다. 단, 현재 과학영재교육원에서 이루어지고 있는 영재교육이 기초반과 실험반으로 나누어 운영되고 있는 점을 고려하여, 본 논문에서는 기초반과 실험반 중 기초반에 초점을 두고 연구를 진행하였다.

2. 용어의 정의

2.1 교육과정의 정의

교육과정의 의미는 교육과정을 보는 시각과 관점에 따라 매우 다르게 해석되고 있다. 교육 과정을 어떻게 생각하느냐에 따라 좁은 의미의 교육과정과 넓은 의미의 교육과정으로 나누어 생각할 수 있으며, 내용으로서의 교육 과정, 경험으로서의 교육과정, 계획으로서의 교육과정, 결과로서의 교육과정으로 나누어 생각할 수 있으며, 교육 내용 결정 주체의 역할 분담에 따라 국가 수준의 교육과정, 지역 수준의 교육과정, 학교 수준의 교육과정, 교사 수준의 교육과정으로 나누어 생각할 수도 있다.

하지만 1998년에 교육부에서 제시한 초등학교 교육과정의 개발을 보면 의도적이고 계획적인 학교 교육에 적용하고자 하는 교육과정은 ‘형식적인 교육을 위한 교육 목표나 교육 내용, 방법, 평가를 체계적으로 조작한 교육 계획’이라고 포괄적으로 정의할 수 있다고 하였다.

2.2 영재의 정의

영재교육을 얘기하는 데 있어 가장 중요하고 선정되어야 할 것이 파연 영재가 누구인가에 대한 정의를 내리는 것이다. 어떤 특성을 갖고 있는 아이들을 영재라 고할 수 있는지 영재에 대한 정의와 특성을 규정하는 것이 그 무엇보다도 중요한 일이다. 하면하면 영재의 정의와 특성이 어떻게 규정되느냐에 따라 영재 신분이며 영재교육, 그리고 교육내용에 대한 평가까지 영재교육에서 이루어지는 모든 것이 결정되어가는 것이며. 하지만 이런 영재의 정의는 시대나 사회의 가치관과 필요성에 따라 그 의미가 다양하게 변하고 있다.

지금까지 연구된 여러 학자들의 견해를 종합해보면 영재는 평균 이상의 지능 내지 특정 영역에서 타인보다 우수한 지적 능력과 특정 분야에 대한 탐랑한 능력 때문에 같은 학급의 학생들에 비해 탐랑한 성취나 학습 능력을 보이고, 특정 영역의 문제에 부딪혔을 때 이의 해결을 위하여 창의적인 사고 과정을 동원할 수 있는 자라고 할 수 있다.

2.3 초등 정보과학영재의 정의

지금까지 연구된 초등 정보과학영재의 정의를 종합해보면 초등 정보과학영재는 초등학생으로써 평균이상의 지적 능력을 갖고, 컴퓨터에 대한 강한 호기심과 높은 창의력을 바탕으로 특정 문제에 부딪혔을 때 문제 상황에 대해 혼란을 느끼고, 정보통신기술 활용능력을 바탕으로 문제를 분석하고, 해결을 위한 정보를 수집하여 문제를 해결하고, 새로운 정보를 창출해낼 수 있는 아동으로 정의할 수 있다.
3. 영세교육과정

3.1 영세교육과정의 정의


첫째, 영세교육과정은 교육기회균등이라는 민주적 원리에 기초하고 있다.

둘째, 영세교육과정은 높은 수준의 능력을 가진 학생들을 대상으로 한다.

셋째, 영세교육과정은 영세학의 특성을 고려한 차별화된 교육과정이다.

넷째, 영세교육과정은 잠재적 재능을 가시적 재능으로 전환시키는 것을 목표로 한다.

훈련 영세의 특성으로 우수한 지적 능력, 탁월한 성취나 학습 능력, 문제 해결력과 집중력, 높은 창의력 등을 특성으로 들 수 있다. 영세교육과정은 이런 특성을 갖고 있는 영세를 위한 교육과정이다. 따라서 영세교육과정은 일반 학생들로 교육과정은 다르게 영제만을 위한 차별화된 교육과정이어야 한다.

영제만을 위한 차별화된 교육과정이란 영세의 특성을 고려한 교육과정이어야 한다는 얘기이다. 우수한 지적 능력을 가진 영세의 특성을 최대한 발휘할 수 있도록 교육과정을 구성하고 교육방법도 영세의 특성에 맞추어서 그들의 무한한 가능성을 최대한 발휘시켜 주어야 한다.

3.2 영세교육의 목표

영세교육의 목표는 창의적인 문제 해결력, 신장, 자기주도적인 학습 능력과 태도, 행동, 도덕성, 사회성, 지도력의 개발을 바탕으로 한 개인의 자아실현과 사회에의 공헌으로 요약할 수 있다[11].

영세교육은 뒤어난 창의성을 갖고 있는 영재를 대상으로 하는 것이다. 따라서 영세교육의 목표는 일반 학생들의 교육 목표와는 차별화 되어야 한다. 일반 학생을 위한 교육은 기본지식과 기능, 태도 등을 습득시키는데 많
4. 교육과정 개발을 위한 기초조사

4.1 기초기술소양교육의 필요성

영제에 대한 각각 중 하나는 영제는 다른 아이들보다 뛰어나기 때문에 기초적인 것은 다 알고 있다고 생각하는 것이다. 그래서 각 대학 부설 과학영예교육이나, 교육청 산하 영제학급에서 기초기술소양교육을 중요하지 않는 경향이 많았다. 하지만 컴퓨터에 대한 강한 호기심을 갖고 있으며 특정 문제에 부딪쳤을 때 문제 상황에 대해 강한 흥미를 느끼고 문제 해결을 위한 높은 창의력을 갖고 있으나 단지 기초기술이 부족한 아동은 정보과학영제가 아니라고 말할 수 없다. 아무도 이런 아동에게 정보과학영제가 아니라고 말할 수 없다. 따라서 컴퓨터에 대한 강한 호기심과 높은 창의력을 갖고 있지만 기초기술이 부족한 아동들을 위해 기초기술소양교육을 정보과학 영제를 위한 교육과정에 목포 할당하기 한다. 특히 컴퓨터를 쉽게 볼 기회가 그만큼 적은 초등 정보과학영제에서는 기초기술소양교육이 높 필요하다.

인천대학교 부설 과학영예교육원에서 교육을 받고 있는 4.5학년 초등학생에 70명을 대상으로 설문조사를 실시한 결과 영제들은 자신의 컴퓨터 실력이 매우 잘 한다고 생각한 아동이 전체의 9%로 나타났고, ' 잘 한다'고 생각하는 아동은 전체의 30.8%로 나타났으며, 대부분의 학생들이 자신의 컴퓨터 실력은 '보통' 이거나 ' 못한다'고 응답하였다. 여기서 중요한 것이 영제라고 해서 써 컴퓨터를 잘하는 아동이 아니라는 점이다. 정보과학영제도 마찬가지이다. 컴퓨터에 대한 소양이 떨어지도록 정보과학영제로서 갖추어야 할 재반의 것을 다 갖추고 있다면 그 아동은 정보과학영제가 될 수 있다. 나중에 충분히 그 실력을 향상 시킬 수 있는 컴퓨터 소양과 같은 것은 정보과학영제를 결정짓는데 중요한 측도는 아닌 것이다.

4.2 각 대학 부설 과학영예교육원의 교육내용 분석


이들 대학 부설 과학영예교육원을 살펴보면 영예교육 분야로 주로 수학, 과학, 정보과학을 중심으로 운영되고 있는데, 정보과학의 경우 중학교 과정에서는 대부분 포함되어 있으나, 초등학교 과정에서는 10개 과학영예교육원만 정보과학분야를 운영하고 있었다.

각 대학 부설 과학영예교육원의 교육과정은 다음과 같은 문제점을 갖고 있다.

첫째, 과학영예교육원에서 자체 개발한 교육과정의 공유가 없어서 각 대학별로 너무 다른 내용을 가르치고 있다.

둘째, 과학영예교육원의 교육 내용을 보면 대부분 프로그래밍을 학습하고 있지만 정보과학영제로 해서 모든 기초기술소양이 빠져나가기 때문에 이에 대한 고려도 필요하다.

셋째, 과학영예교육원의 교육 내용이 너무 기능 위주로 이루어지고 있기 때문에 기능 외의 지식적인 면에 대한 학습이 필요하다.

넷째, 영제의 가장 큰 특징인 창의력에 대한 배려가 조금 부족하여 창의력을 체계적으로 구하는 교육 내용이 교육과정에 포함되어야 한다.

4.3 각 대학 부설 과학영예교육원의 교육일정 분석
각 대학 부설 과학영재교육원의 운영을 보면 대부분 1년 단위로 운영되고 있는데 운영 방식은 대학 중에 이루어지는 학과의 교육과 참여교육, 방학에 이루어지는 집중교육으로 운영방식을 나눌 수 있다.

모든 과학영재교육원이 복과 가을에는 원격 교육이나 참여교육을 하고 있으며, 여름과 겨울 방학에는 집중교육을 실시하고 있다. 하지만 교육기간과 시간은 대학 부설 과학영재교육원의 자체 교육과정에 따라 이루어지고 있으므로 서로 다르게 운영되는 부분이 많았다.

4.4 정보통신기술교육 내용 분석

교육인적자원부에서 21세기 지식정보화사회를 선도하는 인재를 육성하기 위해 컴퓨터와 인터넷 등을 활용한 정보통신기술 (ICT : Information and Communication Technology) 교육 운영 지침을 마련하고 실시하고 있다.

이에 각급 학교에서는 교육인적자원부에서 마련한 정보통신기술교육 단계별 내용 체계에 따라 모두 5단계로 나누어서 2001년부터 단계적으로 시행하고 있다.


4.5 특기적성교육 내용 분석

계양활동 시간이나 특별활동 시간에 실시되는 컴퓨터 교육을 살펴보면 각급 학교에서 방과 후에 운영되는 특기적성교육을 그 예로 들 수 있다. 방과 후 특기적성 교육은 사교육비 경감의 일환으로 각급 학교에서 실시하는 것으로 바이올린, 피아노, 컴퓨터 등 여러 분야가 있지만 그 중 컴퓨터 교육은 다양 한 교육 내용을 통하여 미래 정보화 사회의 주역이 될 인재를 양성하는 것을 그 목적으로 하여 활발하게 이루어지고 있다.

5. 초등 정보과학영재를 위한 교육과정 개발

5.1 단계별 교육내용 구성

현재 각 대학 부설 과학영재교육원에서 이루어지는 교육내용을 살펴보면 대부분 프로그래밍 위주의 교육이 많이 이루어지고 있다. 하지만 이것도 처음 영재교육이 실시된 때와 비교하면 그 비율이 많이 줄어든 것이다. 처음 영재교육이 실시된 때의 과학영재교육원에서는 프로그래밍 교육이 영재교육의 핵심이었고, 영재교육과 프로그래밍 교육을 주로 하기보다는 기초기술스탑과 관련된 것과 병행해서 교육이 이루어지고 있는 추세이다.

영재라는 이유 하나만으로 영재는 모든 것을 다 할 수 있다는 생각을 갖기가 쉽다. 그리고 영재는 가장 최상의 교육을 받아야 한다고 생각을 한다. 하지만 영재라고 해서 항상 모든 것을 다 할 수 있고, 최상의 교육을 받아서 그것을 자기의 것으로 만들 수 있는 것은 아니 다. 특히 초등 정보과학영재의 경우는 그 정도가 더 심하다.

이에 본 논문에서는 기초기술소양교육과 프로그래밍 교육을 합쳐서 1학기에는 창의력 신장을 기반으로 한 기초기술소양교육을 주로 교육과정을 구성하였고, 2학기에는 창의력 신장을 기반으로 한 프로그래밍 교육 주로 교육과정을 구성하였다. 여기에 정보통신기술의 중요성과 비중으로 1, 2학기 교육과정에 정보통신기술교육을 추가하여 내용을 구성하였다.

5.2 단계별 교육내용에 따른 학습주제 및 학습목표

1학기와 2학기에 교육할 수 있는 단계별 교육내용을 구성하였는데, 실제 교육에서 절명 필요했던 것은 단계별 교육내용에 따른 구체적인 학습목표이다. 따라서 1학기와 2학기에서
이미지되는 단계별 교육내용에 따른 구체적인 학습목표를 구성해 보았다. 다음 <표 1>은 단계별 교육내용 중 1학기 소프트웨어 활용(1)에 관한 학습주제 및 학습목표의 예시이다.

<표 1> 소프트웨어 활용(1)에 따른 학습주제 및 학습목표

<table>
<thead>
<tr>
<th>단계</th>
<th>학습주제</th>
<th>학습목표</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>레드프로세서의 기초</td>
<td>레드프로세서 프로그램의 특성 및 활용법을 할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이용을 위한 다양한 방법으로 활용할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>표 및 구조 개체를 만들고 자신의 필요에 맞게 다양한 편집할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>레드프로세서의 교육기능을 익히고 능숙하게 사용할 수 있다.</td>
</tr>
<tr>
<td>2</td>
<td>프리랜던션의 기초</td>
<td>프리랜던션 프로그램의 특성 및 활용법을 할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>표를 사용하여 다양한 문제를 작성할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>레드프로세서를 이용하여 다양한 문서를 만들 수 있다.</td>
</tr>
<tr>
<td>3</td>
<td>텔레비전 채널 소프트웨어의 기초</td>
<td>텔레비전 제작 소프트웨어의 특성 및 활용법을 할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로젝트를 만들고 사용할 수 있다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>레드프로세서, 프로그램, 소프트웨어를 이용하여 다양한 문서를 작성할 수 있다.</td>
</tr>
</tbody>
</table>

5.3 교육방법에 따른 단계별 교육내용 분류

초등 정보과학영역을 위한 교육방법으로 나동식(2003)은 교사의 주도하에 이루어지는 일체학습, 학생 개인이 중심이 되어 학습이 이루어지는 개별학습, 동 이상의 학생이 협력하여 과제를 해결해 나가는 협동학습, 하나의 프로젝트를 수행해 나가면서 필요한 지식과 기술을 습득할 수 있는 프로젝트학습을 제시하였다. 하지만 실제로 대학 부설 과학영역교육원에서 이루어지고 있는 교육을 보면 일반 학교처럼 교사가 학습해야 할 내용을 설명하고 학생이 이해하는 형식이 아니라 대부분 학생 스스로 학습해 나가는 형식으로 교육이 이루어지고 있다. 이는 대학 부설 과학영역교육원에서 연계교육이 이루어지는 교육시간이 매우 적기 때문에 그 짧은 시간에 교사가 설명하고 학생이 이해하는 식의 학습은 이루어질 수 없고, 또 이루어진다 해도 매우 비효율적이기 때문에 학생 스스로 학습해 나가는 형식으로 교육이 이루어지기 때문이다. 그리고 연계라는 특성에 비추어 볼 때 교사의 설명만 듣고 있기보다는 영역 아동 스스로 탐색해 나가는 것이 올바른 교육 방법이다. 이때 교사는 조언자나 안내자 역할을 하는 것이 올바른 것이다.

따라서 본 논문은 실제 대학 부설 과학영역교육원에서 사용할 수 있는 과학교육 과정을 개발하는데 그 목적이 있으므로 연계교육의 교육방법을 교사의 주도에 이어나가는 일체학습, 개별학습, 협동학습, 프로젝트학습으로 나누는데, 이는 바나라 실제 대학 부설 과학영역교육원에서 사용할 수 있도록 원격교육과 집중교육으로 나누어 교육내용을 분류해 보았다.

다음은 소프트웨어 활용(1)을 교육방법에 따라서 분류해 놓은 것이다.

<표 2> 소프트웨어 활용(1) 교육방법에 따른 분류

<table>
<thead>
<tr>
<th>단계</th>
<th>학습주제</th>
<th>교육방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>레드프로세서의 기초</td>
<td>원활한 전달</td>
</tr>
<tr>
<td></td>
<td></td>
<td>일체학습</td>
</tr>
<tr>
<td></td>
<td></td>
<td>개별학습</td>
</tr>
<tr>
<td>2</td>
<td>프리랜던션의 기초</td>
<td>원활한 전달</td>
</tr>
<tr>
<td></td>
<td></td>
<td>일체학습</td>
</tr>
<tr>
<td></td>
<td></td>
<td>개별학습</td>
</tr>
<tr>
<td>3</td>
<td>텔레비전 채널 소프트웨어의 기초</td>
<td>원활한 전달</td>
</tr>
<tr>
<td></td>
<td></td>
<td>일체학습</td>
</tr>
<tr>
<td></td>
<td></td>
<td>개별학습</td>
</tr>
</tbody>
</table>

5.4 교육일정에 따른 기초단 교육과정 구성

각 대학 부설 과학영역교육원의 교육일정을 살펴보면 대부분 불과 가운데에는 원격교육과 참여교육이, 여름과 겨울에는 2학년 5학년 정도의 집중교육이 이루어지고 있다. 이로써 짧은 시간 안에 연계교육이 이루어지고 있기 때문에 실제 교육이 이루어지는 때는 교사가 많은 내용을...
을 설명해 줄 수 없고 대신 아동들 스스로 학습주체에 따라 학습을 해야 하는 경우가 많은 것이다.

본 논문에서는 대학 부설 과학영재교육원이 많이 있지만 그 교육과정은 간직의 차이만 있을 뿐 그 방법적인 것은 대부분 대동소이해서 대학 부설 과학영재교육원 중 인천대학교 과학영재교육원의 교육일정을 참고하여 볼과 가온에 8주의 원적교육과 1번의 참여교육을 하고, 여름과 가을에는 2박 3일의 집중교육을 하는 것으로 내용을 구성하였다. 볼과 가온에 이루어지는 원적교육은 각 대학 부설 과학영재 교육원 희망자들을 통해 이루어지는 것으로 하였고, 참여교육은 실제로 영재들이 과학영재 교육원에 와서 학습을 하는 것으로 내용을 구성하였다. 또 여름과 가을에 이루어지는 집중 교육을 보면 특정 과학영재교육원에서는 며칠 동안 합숙을 하면서 교육이 이루어지는 곳도 있지만 영재아동들이 대부분 자신이 살고 있는 시·도의 대학 부설 과학영재교육원에서 학습을 받고 있는 점을 고려하여 2박 3일 동안 과학영재교육원에서 외부 학습을 하는 것으로 내용을 구성하였고, 교육기간은 3일 동안 하루 4시간씩 학습하는 것으로 총 12시간 학습으로 내용을 구성하였다.

6. 결론 및 제언

6.1 결론
 지금까지 현재 각 대학 부설 과학영재교육원의 교육내용과 학과에서 이루어지는 정보통신기술교육의 교육과정, 또 방과 후에 이루어지는 특기적성 교육 중 컴퓨터 교육에서 이루어지는 교육 내용을 살펴보고, 이를 기반으로 초등 정보과학영재에 대한 교육과정을 제시하였다.

또한 제시한 교육과정을 각 대학 부설 과학 영재교육원의 교육일정 중 공통적으로 이루어지는 볼과 가온의 원적교육 및 참여교육, 여름과 가을의 집중교육으로 교육내용을 구성하였고, 교육내용은 기초반과 심화반 중 기초반을 중심으로 내용을 구성하였다.

영재교육의 중요성은 더 말할 필요가 없을 만큼 그 중요성이 높아졌다. 본 논문에서 제시한 교육과정은 기초기술소양과 프로그래밍 교육을 중심으로 내용을 구성하였고, 여기에 정보통신기술교육을 강화하였다. 그리고 교육내용을 구성하는데 있어서 초등 정보과학영재의 창의력을 신장시키는 방안으로 내용을 구성해 보았다.

영재라는 이유만으로 처음부터 가장 쉬운 내용에 대한 것은 교육과정에서 제외시키는 것이 많이 볼 수 있다. 그래서 실제 영재교육이 이루어지는 것을 보면 선인들을 가르칠 때 사용하는 프로그래밍 언어를 교육대상으로 삼고 교육을 하고 있다. 하지만 실제 정보과학영재교육을 받고 있는 영재들을 보면 영재의 특성인 창의성이 풍부한 아동은 많이 있지만 컴퓨터 소양이 뛰어난 아동은 그리고 많지 않았다. 그렇다고 해서 컴퓨터 소양이 부족하니까 정보과학영재가 아니라고 말할 수 없으므로 컴퓨터 소양이 부족한 아동들에 대한 배려가 꼭 필요하다. 그래서 본 논문에서는 1학기 내용을 기초기술소양을 기르는데 중점을 두었고, 2학기에는 1학기에서 배운 내용을 바탕으로 프로그래밍적 사고를 기르는데 중점을 두어 교육과정을 구성하였다.

6.2 제언

항후 연구 과제 및 보다 발전된 초등 정보과학영재교육을 위해 몇 가지 과제를 지적하고자 한다.

첫째, 영재교육이 실시되고 있지만 국가적인 교육과정이 없어 각 대학 부설 과학영재교육원별로 교육과정을 개발하는데 많은 어려움을 겪고 있다. 따라서 보다 체계적이고 전일보된 영재교육을 위해 국가적인 교육과정 개발이 용선되어야 한다.

둘째, 본 논문에서 초등 정보과학영재교육을 위한 교육과정을 제시했는데, 이는 기초반을 중심으로 구성한 것이고 심화반에 대한 것은 제시되지 않았기에 기초반에 이는 초등 정보과학영재교육을 위한 교육과정을 제시해야 한다.
학영제교육 실화반을 위한 교육과정이 개발되어야 한다.

세계, 초등 정보과학영역교육을 위한 교육 영역 및 교육내용에 맞는 교재의 개발이 이루어져야 한다. 현재 교재는 영역교육을 담당하고 있는 교사가 개발하고 있는데, 이는 여러 가지 여건에 의해 좋은 교재의 개발이 어렵다고 현실이다. 따라서 좋은 교재가 개발되기 위한 여러가지 여건 마련의 필요성이 필요하다.

넷째, 현재 영역교육이 이루어지고 있는 것을 보면 교육일정이 매우 혼잡고 또 교육시간도 매우 짧아서 보다 체계적이고 효율적인 교육이 이루어지지 못하고 있다. 따라서 보다 효과적인 영역교육을 위해서라도 각 대학 부설 과학영역교육원별로 교육일정을 늘려서 영역교육을 위해 보다 많은 시간을 투자해야 한다.

다섯째, 현재 영역교육은 온라인과 참여교육, 집중교육으로 이루어지는데 온라인 교육에 대한 연구가 아직 미흡한 현실이다. 요즘 정보가 넘치고 있는 E-Learning 사이트처럼 효과적인 온라인 교육을 위해 보다 많은 연구가 이루어져야 할 것이다.

여섯째, 현재 각 대학 부설 과학영역교육원에서 이루어지고 있는 교육내용을 서로 공개하여 서로간의 노하우를 공유하고 보다 체계적인 교육이 이루어지도록 해야 할 것이다. 현재 각 대학 부설 과학영역교육원의 교육내용은 영역교육을 받고 있는 학생 이외에는 알 수 없으며, 또 학습이 끝나고 나서 영재 아동에게 나누어 주었던 교재도 다시 영재교육원에서 회수해 가는 것으로 보안을 철저하게 지키고 있다. 앞으로는 서로간의 교육과정과 노하우를 공유하여 보다 발전된 영재교육을 위한 다양한 노력을 해야 할 것이다.

7. 참고문헌


(1) 1학기

<table>
<thead>
<tr>
<th>단계</th>
<th>1단계</th>
<th>2단계</th>
<th>3단계</th>
</tr>
</thead>
<tbody>
<tr>
<td>컴퓨터 기초 및 활용</td>
<td>컴퓨터의 구성과 기능</td>
<td>운영체제의 개념과 사용 방법</td>
<td>유달리티 프로그램의 사용</td>
</tr>
<tr>
<td></td>
<td>소프트웨어의 종류와 특징</td>
<td></td>
<td>멀티미디어 제작 프로그램의 사용</td>
</tr>
<tr>
<td>소프트웨어 활용(1)</td>
<td>워드프로세서의 기초</td>
<td>프리젠테이션의 기초</td>
<td>웹페이지 제작 소프트웨어의 기초</td>
</tr>
<tr>
<td></td>
<td>워드프로세서를 이용한 다양한 문서작성</td>
<td>프리젠테이션 프로그램을 이용한 다양한 문서 작성</td>
<td>웹페이지 제작 소프트웨어의 사용법</td>
</tr>
<tr>
<td>소프트웨어 활용(2)</td>
<td>그래픽 소프트웨어의 특징</td>
<td>디지털 사운드 편집 프로그램의 특징</td>
<td>멀티미디어 저작도구의 특징</td>
</tr>
<tr>
<td></td>
<td>그래픽 소프트웨어의 기초 사용법</td>
<td>디지털 사운드 편집 프로그램의 기초 사용법</td>
<td>멀티미디어 저작도구를 이용한 응용프로그램의 제작</td>
</tr>
<tr>
<td>소프트웨어 활용(3)</td>
<td>스프레드시트의 기초</td>
<td>스프레드시트의 기초</td>
<td>스프레드시트의 고급</td>
</tr>
<tr>
<td></td>
<td>연산</td>
<td>연산</td>
<td>연산 및 활용</td>
</tr>
<tr>
<td>컴퓨터 통신</td>
<td>웹브라우저의 종류 및 사용법</td>
<td>P2P 서비스를 이용한 자료의 공유</td>
<td>게시판 설치 및 제작</td>
</tr>
<tr>
<td></td>
<td>전자우편과 메신저</td>
<td>Telnet, FTP의 활용</td>
<td>웹페이지 운영을 위한 서비스 제공</td>
</tr>
<tr>
<td>정보의 이해와 응용</td>
<td>정보의 개념</td>
<td>정보 활용의 자세와 태도</td>
<td>정보윤리와 저작권</td>
</tr>
<tr>
<td></td>
<td>정보사회에서의 바른 생활</td>
<td>온라인 정보 선택과 활용</td>
<td>온라인 네트워크 활용</td>
</tr>
<tr>
<td></td>
<td>정보윤리의 이해</td>
<td>온라인 인터넷의 이용</td>
<td>개인정보 보호의 중요성</td>
</tr>
</tbody>
</table>

(2) 2학기

<table>
<thead>
<tr>
<th>단계</th>
<th>1단계</th>
<th>2단계</th>
<th>3단계</th>
</tr>
</thead>
<tbody>
<tr>
<td>순서도</td>
<td>순서도의 개념</td>
<td>순서도의 작성 방법</td>
<td>순서도를 이용한 문제 해결 장치</td>
</tr>
<tr>
<td>프로그래밍 언어</td>
<td>프로그래밍과 프로그래밍 언어의 종류</td>
<td>프로그래밍 언어의 종류</td>
<td>Quick Basic, C/C++, Pascal, Visual Basic, VC++, Delphi</td>
</tr>
<tr>
<td>알고리즘과 자료구조</td>
<td>알고리즘의 개념</td>
<td>리스토와 배열, 트리와 그래프</td>
<td>정렬과 정렬기법</td>
</tr>
<tr>
<td></td>
<td>스택과 큐</td>
<td>작업과 탐색기법</td>
<td>탐색과 탐색기법</td>
</tr>
<tr>
<td>데이터베이스</td>
<td>데이터베이스의 개념 및 기초</td>
<td>데이터베이스 활용</td>
<td>강단단 데이터베이스의 설계</td>
</tr>
<tr>
<td>운영체제</td>
<td>운영체제의 개념</td>
<td>운영체제의 종류</td>
<td>각 종류별 운영체제의 특징</td>
</tr>
<tr>
<td>정보의 이해와 응용</td>
<td>정보통신윤리의 필요성</td>
<td>인터넷 중독 장애</td>
<td>사이버 범죄에 대한 대응</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>크래킹과 해킹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>컴퓨터 바이러스</td>
</tr>
</tbody>
</table>
<부록2>초등정보과학영재 기초반을 위한 교육영역 및 주제(1학기 원격교육)

<table>
<thead>
<tr>
<th>주 목</th>
<th>교 육 영 역</th>
<th>단 계</th>
<th>주 제</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>컴퓨터 기초 및 운영체제</td>
<td>1</td>
<td>컴퓨터의 구성과 기능</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>소프트웨어의 종류와 특성</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>1</td>
<td>정보의 개념</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>정보사회에서의 바른 생활</td>
</tr>
<tr>
<td></td>
<td>컴퓨터 기초 및 운영체제</td>
<td>2</td>
<td>운영체제의 개념과 사용 방법</td>
</tr>
<tr>
<td></td>
<td>컴퓨터 통신</td>
<td>1</td>
<td>웹브라우저의 종류 및 사용 방법</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전자우편과 메신저</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>단순검색, 자료 및 복합 검색</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>1</td>
<td>정보 응용의 이해</td>
</tr>
<tr>
<td>2</td>
<td>컴퓨터 기초 및 운영체제</td>
<td>3</td>
<td>유틸리티 프로그램의 사용</td>
</tr>
<tr>
<td></td>
<td>소프트웨어 활용(1)</td>
<td>1</td>
<td>워드프로세서의 기초</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>2</td>
<td>정보활용의 자세와 태도</td>
</tr>
<tr>
<td></td>
<td>소프트웨어 활용(1)</td>
<td>2</td>
<td>프리젠테이션의 기초</td>
</tr>
<tr>
<td>4</td>
<td>소프트웨어 활용(2)</td>
<td>1</td>
<td>그래픽 소프트웨어의 특징</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>2</td>
<td>음바른 정보 선택과 활용</td>
</tr>
<tr>
<td>5</td>
<td>소프트웨어 활용(1)</td>
<td>3</td>
<td>웹페이지 제작 소프트웨어의 기초</td>
</tr>
<tr>
<td></td>
<td>소프트웨어 활용(2)</td>
<td>2</td>
<td>디지털 사운드 편집 프로그램의 특징</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>2</td>
<td>음바른 인터넷의 이용</td>
</tr>
<tr>
<td></td>
<td>소프트웨어 활용(2)</td>
<td>2</td>
<td>동영상 편집 프로그램의 특징</td>
</tr>
<tr>
<td>6</td>
<td>소프트웨어 활용(3)</td>
<td>1</td>
<td>스프레드시트의 기초</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>3</td>
<td>정보 응용과 자작권</td>
</tr>
<tr>
<td>7</td>
<td>소프트웨어 활용(2)</td>
<td>3</td>
<td>멀티미디어 자작도구의 특징</td>
</tr>
<tr>
<td></td>
<td>소프트웨어 활용(3)</td>
<td>2</td>
<td>스프레드시트의 기초 연산</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>3</td>
<td>음바른 네트워킹 형성</td>
</tr>
<tr>
<td>8</td>
<td>컴퓨터 통신</td>
<td>2</td>
<td>P2P 서비스를 이용한 자료의 공유</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Telnet, FTP의 활용</td>
</tr>
<tr>
<td></td>
<td>정보의 이해와 응용</td>
<td>3</td>
<td>개인정보 보호의 중요성</td>
</tr>
</tbody>
</table>