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Abstract: An optimal combination of arbitrary number correlated estimates is derived. In particular, for two estimates this 

combination represents the well-known Millman and Bar-Shalom-Campo formulae  for  uncorrelated and correlated estimation errors,

respectively. This new result is applied to the various estimation problems as least-squares estimation, Kalman filtering, and adaptive 

filtering.  The new approximate adaptive filter with a parallel structure is proposed. It is shown that this filter is very effective for 

multisensor systems containing different types of sensors.   Examples demonstrating the accuracy of the proposed filter are given. 
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1. INTRODUCTION

   In recent years, there has been growing interest to fuse 

multisensory data to increase the accuracy of estimation 

parameters and system states. This interest is motivated by the 

availability of different types of sensor which uses various 

characteristics of the optical, infrared, and electromagnetic 

spectrums. The measurements used in the estimation process 

are assigned to a common target as a result of the association 

process. different types of sensors ? The well-known Millman 

and Bar-Shalom-Campo formulae for two uncorrelated and 

correlated estimation errors, respectively, are widely used in 

the filtering and the smoothing problems [1-2]. But there is a 

need to generalize these formulae for the multisensor 

environment so that we can fuse more than two arbitrary 

dependent estimates.   

    The main purpose of this paper is a generalization of the 

Millman and  Bar-Shalom-Campo formulae to arbitrary 

number of estimates, which we called generalized Millman’s 

formula (GMF). And second purpose is to show how to apply 

the GMF in the several adaptive filtering problems. 

2. THE GENERALIZED MILLMAN’S 

FORMULA 

    Suppose we have N  unbiased estimates 
N1 x̂,,x̂  of an 

unknown random vector 
nRx  with the associated error 

covariances
iijiij x̂-xx~,x~,x~covP . It is desired 

to find the overall linear estimate of x , that is, the optimal 

estimate of the form 

,Ic,x̂cx̂ n

N

1i

i

N

1i

ii
                                                  (1)

where nI is the nn  unit matrix, and 
N1 c,,c  are 

nn constant weighting matrices determined from the 

mean- 

square criterion, 

ic

2
N

1i

iiN1 minx̂c-xEc,,cJ  (2) 

   The following linear equations for unknown  matrices 

N1 c,,c  give a solution of this problem: 

,0PPcPPc NNNjN

1-N

1i

iNiji

.Ic,1-N,1,j n

N

1i

i
   (3) 

Proof.    Using Eq. (1), criterion (2) can be rewritten as 

follows:

N

1ji,
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Substituting the expression  

1-N1nN ccIc

into Eq. (4), we obtain 
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                                                                           (5) 

Next, use the formulae 
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Let us differentiate each summand of the function (5) with 

respect to 1-N1 c,,c using Eqs. (6) , and then set the result 

to zero, i.e.,  

1-N,1,i,0
c

J

i

we have the linear algebraic equations (3) for the unknown 

weighting matrices N1 c,,c .

    This complete the derivation of the Eqs.  (3). 

3. ADAPTIVE FILTERING IN LINEAR 

SYSTEMS 

We also consider the problem of recursive filtering for 

dynamic systems with unknown parameters. A new 

suboptimal unbiased filter based on GMF (1), (3) is herein 

proposed. This filter also can be applied for dynamic systems 

with multisensor environment to fuse local sensor’s estimates 

to get more accurate estimates. The equation for error 

covariance characterizing the mean-square accuracy of the 

filter is derived.  

    Let’s consider the following discrete-time dynamic system 

with unknown parameters in observation model: 

,0k,vGxFx kkkk1k

,wxHy kkkk
   (7) 

where state 
n

Rkx , measurement 
mRky , noises 

kk Q0,N~v  and kk R0,N~w ; and 

kH and
kR  are matrices depending on the unknown 

parameter 
p

R , which takes only a finite set of values  

N21 ,,, .

    In adaptive filtering theory, two filters  are primarily used 

for estimation of the state vector. Both of these filters are 

based on the Bayesian approach in which the unknown 

parameter  is assumed to be random with a prior known 

distribution [3-6]: 

,p,,pp N1

.0p,1pp iN1
  (8)  

In the first filter,  is treated as a random constant vector 

such as  

k1k  or more efficiency,  

kk1k
,    (9)  

where k  is any zero-mean Gaussian white noise sequence. 

And the system (7) together with assumption (4) can be 

reformulated as the nonlinear model for the composite state 

vector 
T

kkx :

,wxHy

,
vG

xH

xFx

kkkkk

k

kk

kkk

kk

1k

1k

and the suboptimal nonlinear filtering procedures (extended 

Kalman filter, and so on [1,3,6])  can be applied to estimate 

the augment  state vector which contains k as its components. 

It has been observed that the suboptimal nonlinear filters may 

give biased estimates and sometimes diverge. Also these 

filters are rather difficult to implement real-time, especially for 

multidimensional dynamic systems.  

     

The second filter is based on the Lainiotis partitioning 

approach [4-5], which is separate the filtering process kx

from the identification of the unknown parameter . In this 

case the optimal mean square estimate 
k

kk yxEx̂  of 

the state kx  and the corresponding estimation error 

covariance
kT

kkkkk yx̂-xx̂-xEP  are given by 

the  Lainiotis-Kalman filter equations:  

,x̂ypx̂
N

1i

ik

k

ik

,x̂-x̂x̂-x̂

PypP

T

kikkik

N

1i

kk

k

ik

     (10)  

where

,,yxEx̂ i

k

kik

i

kT

kkkkik ,yx̂-xx̂-xEP    (11)  

are the state estimate and its error covariance, respectively,  

given by the elemental discrete Kalman filter (KF) matched to 
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the linear system (7) at fixed i , and 
k

i yp   is a

posteriori probability of i  given k1

k y,,yy ,

providing by Bayesian rule (see [4-5]). The filter (10), (11) 

yields an effective estimation algorithm only for low 

dimension of the parameter vector 
p

R , since it requires 

an evaluation of  the conditional probability densities 

k

i yp  at each time instance 1,2,k .

     

    We  propose an alternative adaptive filtering algorithm 

without the additional assumption (8) about a prior probability 

p  of  the parameter . This algorithm has no need of  

conditional densities 
k

i yp  calculations. The new filter 

can be derived by using the standard Kalman filter (KF) for 

the system model (7) at the fixed value of the parameter 

i  ( N,1,i ), and then combining the obtained 

kalman estimates 
Nk1k x̂,,x̂  by using GMF (1), 

(3). The resulting filter will clearly be an approximate 

(suboptimal).

    According to (7), we have N  unconnected dynamic 

systems with known matrices ikkkk H,Q,G,F , and 

ikR , respectively: 

,Q0,N~v,vGxFx kkkkkk1k

,R0,N~w,wxHy ikkkkikk
        (12) 

where ""i  is fixed and i  is the known value of the 

parameter . Using the KF matched to (12) at fixed i , we 

have N  estimates  

1kx̂ , …, 
Nkx̂

and associated error covariances 

1kP , …, 
NkP .

Next, based on the GMF (1) the new adaptive estimate of the 

state kx  can be determined by the following equations:   

,Ic,x̂cx̂ n

N

1i

(i)

k

N

1i

ik

(i)

k

GMF

k
  (13) 

where the weighting matrices 
(N)

k

(1)

k c,,c  determined by 

the GMF Eqs. (3) and KF Eqs. 

Remark 1: Since  takes a finite number of values 

N21 ,,,  the kalman estimates ikx̂  are 

separated for values of N,1,i . Each estimate ikx̂ is

found independently of other estimates 
1kx̂ ,…,

1-ikx̂ ,

1ikx̂ ,…,
Nkx̂ . Therefore, it can be evaluated in 

parallel. The proposed filtering algorithm is also robust, since 

it can be corrected even if one of the parallel kalman estimate 

ikx̂  diverges. In this case, the corresponding weight 

matrix 
(i)

kc  in the weighting sum (13) will tend to zero, 

thereby indicating that the diverging estimate ikx̂  will be 

discarded in the weighting sum of the (13).     

Remark 2: We may note, that the kalman filter gains, the 

error covariances, and the weights 
(i)

kc  may be precomputed, 

since they do not depend on the present observations 
ky , but  

only on the noises statistics kQ  and ikR , the system 

matrices ikkk H,G,F , and also the values of parameter 

N21 ,,, , which are the part of system model. 

Thus, once the observation schedule has been settled, the real-

time implementation of the proposed filter requires only the 

computation of the “local” kalman estimates 

Nk1k x̂,,x̂ and the final estimate 
GMF

kx̂ .

     

    The proposed filter can be also applied  for multisensor 

systems containing different types of sensors.     

4. DATA FUSION OF MULTISENSOR’s 

ESTIMATES

Consider a discrete-time linear dynamic system described 

by a difference equation with additive white Gaussian noise, 

,0,1,k,vGxFx kkkk1k   (14)  

where kk Q0,N~v .

    Suppose that multiple sensor (measurement system) 

involves N  sensors, 

1m
R

(1)

k

(1)

kk

(1)

k

(1)

k y,wxHy

Nm
R(N)

k

(N)

kk

(N)

k

(N)

k y,wxHy   (15)  

with
(N)

k

(1)

k w,,w  are the sequences of zero-mean 

white Gaussian process noise, 
(i)

k

(i)

k R0,~w N ,

N,1,i . The initial state is modeled as a Gaussian 

random vector with known mean and covariance, 

000 P,xN~x . The N+1 noise sequences kv ,

N,1,i,w (i)

k , and the initial state 0x are 

mutually independent.  

    It is well-known that Kalman filter (KF) can be used to 

produce the optimal state estimate based on the results of 

overall measurements

,Y,yyY k

(N)

k

(1)

kk

mR

.mmm N1
    (16)  
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However, the computational cost and the numerical errors of 

the KF increase drastically with the state and measurement 

dimensions, for instance, in multisensor intelligent systems [7].  

Hence, the KF may be impractical to implement. In such cases, 

reduced-order suboptimal filters are preferable since there is 

no need to estimate those states by using overall 

measurements kY  simultaneously. In this paper, we show 

that the GMF may serve as an alternative to solve this problem.   

    The derivation of new suboptimal reduced-order filter is 

based on the assumption that the overall measurement vector 

kY  consists of the combination of the different subvectors 

(N)

k

(1)

k y,,y , which can be processing separately. 

According to Eqs. (14), and (15), we have N unconnected 

dynamic subsystems ( N,1,i ) with state vector  

n
Rkx  and measurement subvector im

R
(i)

ky :

,vGxFx kkkk1k

,wxHy (i)

kk

(i)

k

(i)

k    (17) 

where i  (the number of subsystem) is fixed. 

    Next, let us denote the estimate of the state kx based on the 

measurement 
(i)

ky  by 
(i)

kk
x̂ . To find 

(i)

kk
x̂  we apply the KF 

to the subsystem (17). We have 

,RHPHHPK

,PP,GQGFPFP

,x̂HyKx̂x̂

,xx̂,x̂Fx̂

1
(i)

k

(i)

k

(i)

1-kk

T(i)

k

T(i)

k

(i)

1-kk

(i)

k

0

(i)

00

T

1-k1-k1-k

T

1-k

(i)

1-k1-k1-k

(i)

1-kk

(i)

kk

(i)

k

(i)

k

(i)

k

(i)

1-kk

(i)

kk

0

(i)

00

(i)

1-k1-k1-k

(i)

1-kk

        

.PHKIP (i)

1-kk

(i)

k

(i)

kn

(i)

kk
  (18) 

In the Eqs. (18), 
(i)

kk
P  is the filtering error covariance,  

.x̂xx~,x~covP (i)

kkk

(i)

kk

(i)

kk

(i)

kk
  (19) 

Thus, from the equations (18) we have N  partial filtering 

estimates  

(N)

kk

(1)

kk
x̂,,x̂      (20) 

based on the measurements 
(1)

ky , …,
(N)

ky , respectively, and 

corresponding error covariances 

(N)

kk

(1)

kk
P,,P .    (21)  

Then the new suboptimal estimate 
GMF

kk
x̂  of the state vector  

kx based on the overall measurements  kY  (16) is 

constructed from the partial estimates (20) by using the GMF 

(1):

,Ic,x̂cx̂ n

N

1i

(i)

k

N

1i

(i)

kk

(i)

k

GMF

kk
 (22)   

where the time-varying weighting matrices 
(N)

k

(1)

k c,,c
determined by the Eqs. (3): 

,0PPcPPc (NN)

kk

(Nj)

kk

(N)

k

1-N

1i

(iN)

kk

(ij)

kk

(i)

k

,Ic,1-N,1,j
N

1i

n

(i)

k
  (23)  

where

(i)

kk

(ii)

kk
PP

is the covariance (21) determined by the KF (18), and 

ji,P(ij)

kk
  is cross-covariance,  

(j)

kk

(i)

kk

(ij)

kk
x~,x~covP ,

which satisfy the following recursion: 

,HK-I

GQGFPFHKIP

T(j)

k

(j)

kn

T

1-k1-k1-k

T

1-k

(ij)

1-k1-k1-k

(i)

k

(i)

kn

(ij)

kk

,N,1,ji,,ji,PP 0

(ij)

00
  (24)  

where the gain 
(i)

kK  is determined by the KF (18).   

    Thus, the KF (18), the GMF (22), (23), and the Eq. (24) 

completely define the new suboptimal multisensor filter. Note, 

that in this filter the estimates 
(i)

kk
x̂  are separated for different 

types of sensors. Therefore, the kalman filters (18) can be 

implemented in parallel for various values of N,1,i .

2048



5. EXAMPLE: Identification of a Scalar 

Unknown Parameter 

   To estimate the value of a scalar unknown  from two 

types of measurements corrupted by additive white Gaussian 

noises, the system and measurement models are 

,x,xx kk1k

,wxy (1)

kk

(1)

k ,wxy (2)

kk

(2)

k   (2 5) 

where

;1,2i,r0,~w i

(i)

k N
2

0 ,~x N .

    

 The KF gives the optimal mean-square estimate  
KF

kx̂  of an 

unknown kx   based on the overall measurements  

.yyY
T(2)

k

(1)

kk

In this case   

KF

1-k1-k

KF

1-kk
x̂x̂ ,  and  

KF

1-k1-k

KF

1-kk
PP

and the KF Eqs. (18) take the form: 

,x̂,
x̂y

x̂y
Kx̂x̂ KF

0KF

1-k

(2)

k

KF

1-k

(1)

kKF

k

KF

1-k

KF

k

,P,
Prrrr

Prr
P 2KF

0KF

1-k2121

KF

1-k21KF

k

,

Prrrr

Pr

Prrrr

Pr

K

T

KF

1-k2121

KF

1-k1

KF

1-k2121

KF

1-k2

KF

k
                                 (26) 

For simplicity in Eqs. (26) we denote 

KF

kk

KF

k x̂x̂ ,  and  
KF

kk

KF

k PP .

Using the “step-by-step” induction, we obtain the exact 

formula for the mean square error ,P KF

k

,
kr1

x̂-EP
2

12

2
2KF

k

KF

k     

     

.
rr

rr
r

21

21

12
   (27) 

 Together with the optimal KF (26), we apply the proposed 

adaptive filter based on the GMF. Let denote the partial 

estimates of the unknown kx  based on the single 

measurements 
(1)

ky  and 
(2)

ky  by 
(1)

kx̂  and 
(2)

kx̂ ,

respectively. Using the system model with state kx  and 

single measurement 
(i)

ky ,

,xx k1k

(i)

kk

(i)

k wxy

 for 1,2i , we obtain the equations for 
(1)

kx̂  and 
(2)

kx̂ ,

,PK1P,
Pr

P
K

.x̂,x̂yKx̂x̂

(i)

1-k

(i)

k

(i)

k(i)

1-ki

(i)

1-k(i)

k

(i)

0

(i)

1-k

(i)

k

(i)

k

(i)

1-k

(i)

k

2(i)

0P , .1,2i     (28)  

The exact solutions of the Eqs. (28) take the form: 

,
kr

r
x̂-EP

2

i

2

i2(i)

k

(i)

k

.1,2i,
kr

r
K

2

i

2

i(i)

k
   (29)  

Next, using the GMF (1), (3) at 2N , one can obtain the 

estimate 
GMF

kx̂ of the unknown kx  as 

,x̂cx̂cx̂ (2)

k

(2)

k

(1)

k

(1)

k

GMF

k

,
P2P-P

PP
c

(2)

k

(12)

k

(1)

k

(12)

k

(2)

k(1)

k

,
P2P-P

P-P
c

(2)

k

(12)

k

(1)

k

(12)

k

(1)

k(2)

k
   (30)  

where the error variances  

(11)

kk

(1)

k PP     and   
(22)

kk

(2)

k PP
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are determined by the formulae (29), and the cross-covariance  

(12)

kk

(12)

k PP ,

according to the Eq. (24) is determined by the equation 

,PK1K1P (12)

1-k

(2)

k

(1)

k

(12)

k .P 2(12)

0  (31) 

Using (29)-(31), one can obtain the exact expressions for 
(1)

kc ,

(2)

kc , and 
(12)

kP , respectively. We have 

,
rr

r
c,

rr

r
c

21

1(2)

k

21

2(1)

k

.
krkr

rr
P

2

2

2

1

2

21(12)

k
   (32) 

At last, using (29), (32), and (4) one can  has the error variance  

of the suboptimal estimate 
GMF

kx̂ ,

,x̂-EP
2GMF

k

GMF

k

2

1ji,

(j)

k

(ij)

k

(i)

k

GMF

k cPcP

        

.PcPcc2Pc (2)

k

2(2)

k

(12)

k

(2)

k

(1)

k

(1)

k

2(1)

k
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2

1

2

2

21

2

21GMF

k
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r

rr

rr
P

.
kr

r

krkr

rr2
2

2

1

22

21 (33)

Comparing the error variances (27) and (33), we have  

.
k

1
O

rrkrrkrkr

k

rr

rr
P-P

2

2

2121

2

2

2

1

21

42

2

2

1KF

k

GMF

k

At the values of parameters  

1r1 , 2r2 and 12
,

we have 

2

KF

k

GMF

k
k

1
44.0P-P .

The result show that the GMF yields suboptimal recursive 

filter with good accuracy and certain well-defined 

convergence properties. It provides the best balance between 

computational  

efficiency and desired estimation accuracy.  

6. CONCLUSION 

In this paper  we present the GMF, which represents the  

optimal linear combination of arbitrary number correlated 

estimates. Each estimate is fused by the minimum mean 

square error criterion. Based on the GMF  new suboptimal 

adaptive filters  have derived. These filters have parallel 

structure and are very suitable for parallel processing of 

measurements. The obtained filtering algorithms reduce the 

computational burden and on-line computational requirements. 

The example demonstrate the efficiency and high-accuracy of 

the proposed filtering algorithms. 

    These filters can be widely used in the different areas of 

applications: industrial, military, space, communication, target 

tracking, inertial navigation and others. 
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