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Abstract: An optimal combination of arbitrary number correlated estimates is derived. In particular, for two estimates this
combination represents the well-known Millman and Bar-Shalom-Campo formulae for uncorrelated and correlated estimation errors,
respectively. This new result is applied to the various estimation problems as least-squares estimation, Kalman filtering, and adaptive
filtering. The new approximate adaptive filter with a parallel structure is proposed. It is shown that this filter is very effective for
multisensor systems containing different types of sensors. Examples demonstrating the accuracy of the proposed filter are given.
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1. INTRODUCTION
The following linear equations for unknown matrices
In recent years, there has been growing interest to fuse CiyeeesCy give a solution of this problem:
multisensory data to increase the accuracy of estimation
parameters and system states. This interest is motivated by the N
availability of different types of sensor which uses various C. ( ) +e (P P ): 0
characteristics of the optical, infrared, and electromagnetic Nj NN ’

. . . i=1
spectrums. The measurements used in the estimation process

. e N
are assigned to a common target as a result of the association j= Z c. 3)
process. different types of sensors ? The well-known Millman g !
and Bar-Shalom-Campo formulae for two uncorrelated and
correlated estimation errors, respectively, are widely used in Proof. Using Eq. (1), criterion (2) can be rewritten as

the filtering and the smoothing problems [1-2]. But there is a

follows:
need to generalize these formulae for the multisensor orows
environment so that we can fuse more than two arbitrary
dependent estimates. ( n )T T
The main purpose of this paper is a generalization of the =t E ZC X-X; -X;) €
Millman and  Bar-Shalom-Campo formulae to arbitrary i,j=1
number of estimates, which we called generalized Millman’s
formula (GMF). And second purpose is to show how to apply =tr Z Cn iCi | min . 4)
the GMF in the several adaptive filtering problems. =] CloenCN
2. THE GENERALIZED MILLMAN’S Substituting the expression
FORMULA
cy =1, —(c1 + +cN_1)
Suppose we have N unbiased estimates )A(I yee .,)A(N of an
n into Eq. (4), we obtain
unknown random vector X € R" with the associated error
covariances P, = cov{ii,ij}, X, =x-X,. It is desired N-1 NI
T T
to find the overall linear estimate of X, that is, the optimal J=tr ZCiP iCi + Z(CiPiN - PNiCi )
estimate of the form ij=1 i=l
N N S
. + (c.P. cl +cP ,CT)+P
:zCiXi , Zc (1) UZZI iTiINYj jo Nivi NN
i=1 i=1 ’
N-I N-I
T
where In is the N XN unit matrix, and C,...,Cy are . lci Py =Py ,1CJ'
i= j=
nXn constant weighting matrices determined from the
N-I
mean- T .
square criterion, + ZciPNNC‘ — mm .
i J ClyeemsCNL
- ®)
J(c,yoney)=E x-Z:ci — min @
i=1 G Next, use the formulae
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Llue)l=p7, L ufeer =P,

1 1

2 fufe et -, (7 +7) 0

C.

Let us differentiate each summand of the function (5) with

respect to C;,...,Cy_ using Egs. (6) , and then set the result

to zero, i.e.,

dJ .

—=0, 1=1,...,N-1
ac,

we have the linear algebraic equations (3) for the unknown
weighting matrices C;,...,Cy .

This complete the derivation of the Egs. (3).

3. ADAPTIVE FILTERING IN LINEAR
SYSTEMS

We also consider the problem of recursive filtering for
dynamic systems with unknown parameters. A new
suboptimal unbiased filter based on GMF (1), (3) is herein
proposed. This filter also can be applied for dynamic systems
with multisensor environment to fuse local sensor’s estimates
to get more accurate estimates. The equation for error
covariance characterizing the mean-square accuracy of the
filter is derived.

Let’s consider the following discrete-time dynamic system
with unknown parameters in observation model:

Xy =Fx, +G,v,, k=0,

Y =Hk(8)xk TW,, (7

where state X, € R" , measurement vy, € R™ ., noises
v, ~N(0,Q,) and w, ~N(O,R, () : and
H, (H )and R, (H) are matrices depending on the unknown

parameter & € RP, which takes only a finite set of values
0=6,.0,,....0,.

In adaptive filtering theory, two filters are primarily used
for estimation of the state vector. Both of these filters are
based on the Bayesian approach in which the unknown

parameter & is assumed to be random with a prior known
distribution [3-6]:

®)
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In the first filter, @ is treated as a random constant vector
such as

9k = 6’k or more efficiency,
O =0, + é:k > €

where {g X } is any zero-mean Gaussian white noise sequence.

And the system (7) together with assumption (4) can be

reformulated as the nonlinear model for the composite state
T

vector [Xk Qk] :

PPN

Y :Hk(ek)xk +w,,

F. x,

«(6,)

G, v,
S

Xk+1

Hk+l

and the suboptimal nonlinear filtering procedures (extended
Kalman filter, and so on [1,3,6]) can be applied to estimate

the augment state vector which contains lgk as its components.

It has been observed that the suboptimal nonlinear filters may
give biased estimates and sometimes diverge. Also these
filters are rather difficult to implement real-time, especially for
multidimensional dynamic systems.

The second filter is based on the Lainiotis partitioning
approach [4-5], which is separate the filtering process X
from the identification of the unknown parameter &. In this

case the optimal mean square estimate )A(k = E(Xk|yk) of

the state X, and the corresponding estimation error
. A A \T|. .
covariance P, = El(xk - Xy )(Xk - Xk) |y J are given by

the Lainiotis-Kalman filter equations:

(01)'Xk
(10)
where
f(k(ﬁi ) = E(xk‘yk,@l ),
Pk(ei)zE(Xk'ﬁk)(X 'ﬁk)T‘ykvgiJ an

are the state estimate and its error covariance, respectively,
given by the elemental discrete Kalman filter (KF) matched to



the linear system (7) at fixed & = 01 , and p(@i‘yk) is a

posteriori probability of 01’ given yk = {yl,...,yk} R
providing by Bayesian rule (see [4-5]). The filter (10), (11)
yields an effective estimation algorithm only for low

dimension of the parameter vector 8 € R, since it requires
an evaluation of the conditional probability densities

p(@1 ‘yk ) at each time instance k =1,2,....

We propose an alternative adaptive filtering algorithm
without the additional assumption (8) about a prior probability

p(@) of the parameter @ . This algorithm has no need of
conditional densities p(&i‘yk) calculations. The new filter

can be derived by using the standard Kalman filter (KF) for
the system model (7) at the fixed value of the parameter

0= 0]» (1i=1,..,N), and then combining the obtained
kalman estimates X, ((91 ), vy Xy (HN ) by using GMF (1),

(3). The resulting filter will clearly be an approximate
(suboptimal).
According to (7), we have N unconnected dynamic

systems with known matrices Fk ,G K> Qk , Hk (Q9i ) , and
R K (Hi ), respectively:

X =FX + G vy, vy NN(Ova),
Y =Hk(Hi )Xk TW, Wy NN(O’Rk(ei ))a (12)

where "i" is fixed and 9i is the known value of the
parameter & . Using the KF matched to (12) at fixed ‘9i , wWe

have N estimates

£,(0,). - %,(6y)
and associated error covariances
P, (8). .. P (6))-

Next, based on the GMF (1) the new adaptive estimate of the

state X, can be determined by the following equations:

N N
5 GMF g i
Xg = 2 ,Cﬁ)xk(gi)’ 2 ,CE) =1, (13)
i=1 i=1
_ . M ™) ;
where the weighting matrices C, ",...,C, ~ determined by

the GMF Egs. (3) and KF Egs.

Remark I: Since O takes a finite number of values
0=0,,0,,...,0, the kalman estimates )A(k (01 ) are
separated for values of i =1,..., N . Each estimate )’ik ((9i )is
found independently of other estimates X K (491 ) yeres ﬁk (Hi_l ) ,
)A(k (HM ) ey )A(k (QN) . Therefore, it can be evaluated in

2047

parallel. The proposed filtering algorithm is also robust, since
it can be corrected even if one of the parallel kalman estimate

)A(k(ei) diverges. In this case, the corresponding weight

(@

matrix Ckl in the weighting sum (13) will tend to zero,

thereby indicating that the diverging estimate X K (91 ) will be

discarded in the weighting sum of the (13).
Remark 2: We may note, that the kalman filter gains, the

@

error covariances, and the weights Ckl may be precomputed,

since they do not depend on the present observations yk , but
only on the noises statistics Qk and Rk (ei ) , the system
matrices Fk ,G K> Hk ((9i ) , and also the values of parameter

0= 91 ,92 yeo .,HN , which are the part of system model.

Thus, once the observation schedule has been settled, the real-
time implementation of the proposed filter requires only the
computation  of the  “local” kalman  estimates
MF

A

Xy (91 ), ceey X K (QN ) and the final estimate )A(E

The proposed filter can be also applied for multisensor
systems containing different types of sensors.

4. DATA FUSION OF MULTISENSOR’s
ESTIMATES

Consider a discrete-time linear dynamic system described
by a difference equation with additive white Gaussian noise,

Xy =FEx,+G,v,, k=0,1,..., (14)

where V, ~ N(O,Qk)
Suppose that multiple sensor (measurement system)
involves N sensors,

yO =HDx, ),y eR
T
yV=HVx, +w, yMeR™ (15)

with {WE)},...,{WLN)} are the sequences of zero-mean
white Gaussian process noise, WS) ~ N(O,RE)) s
1=1,...,N . The initial state is modeled as a Gaussian
random vector with known mean and covariance,
Xy ™~ N(XO,P()) . The N+1 noise sequences {Vk} s
{W](:)}, i=1,...,N , and the initial state X, are

mutually independent.

It is well-known that Kalman filter (KF) can be used to
produce the optimal state estimate based on the results of
overall measurements

Y, ={y® ... y™} v, er",

m=m, +lJ +my. (16)



However, the computational cost and the numerical errors of
the KF increase drastically with the state and measurement

dimensions, for instance, in multisensor intelligent systems [7].
Hence, the KF may be impractical to implement. In such cases,

reduced-order suboptimal filters are preferable since there is
no need to estimate those states by using overall

measurements Yk simultaneously. In this paper, we show

that the GMF may serve as an alternative to solve this problem.

The derivation of new suboptimal reduced-order filter is
based on the assumption that the overall measurement vector

Y consists of the combination of the different subvectors

yl((l), ,yf(N) , which can be processing separately.

According to Egs. (14), and (15), we have N unconnected

dynamic subsystems ( 1=1,...,N ) with state vector

X, € R" and measurement subvector yff) e R™
X = EX Gy,
yU=H"x, +w!, (17)

where 1 (the number of subsystem) is fixed.
Next, let us denote the estimate of the state X, based on the

(1)
Xkl -

to the subsystem (17). We have

measurement yg) by To find X ‘ we apply the KF

2O _ x @
Xk\k-l - Fk-lxk-l\k-l 4

:® —g® 4 K(') [y(l) H(') % ® ]’

klk T Kkl k\k

Py :Fk-IP(i) FkT-l +Gk-le-1GI-1 > P =P,

k|k-1 k-1/k-1 00

i =g, () g e vy

k|k-1 k|k-1

PO =[I —KOHO pO (18)

k\k k|k-1

In the Egs. (18), P(i)

K[k is the filtering error covariance,

0 _ {~<i)} S0 _ ~ ()
Pk‘k COVIX gy 5 Xigye = Xi = Xy (19)

Thus, from the equations (18) we have N partial filtering
estimates

L)) & (N)

Wio oo Ry 20)
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based on the measurements yf(l), e yf(N) , respectively, and

corresponding error covariances

pL ..., PY. Q1)

klk 2 K|k

. . s GMF
Then the new suboptimal estimate X K[k of the state vector

Y, (16
constructed from the partial estimates (20) by using the GMF

(1:

% GMF @) 5 () ) _

Xk ZC Xk > ZC (22)
() N)

where the time-varying weighting matrices Cj .5 Cy
determined by the Egs. (3):

X based on the overall measurements

K[k k\k k[k k\k

N-1
Z CE) [P @) _ (1N) ] + Cf(N) [P Ny _ (NN)] 0,
i=1

j=1,...,N-1, Zc(‘) (23)
where

(i) . O]

Pk\k = Pk\k

is the covariance (21) determined by the KF (18), and

Plf‘ljk) , 1# ] is cross-covariance,

) _ { OENT0) }
Py = COVIXypo Xy f»

which satisfy the following recursion:

P& =1, -k "HY JF, PO, L, +G,,Q,.GL]
I, -kOHO [
Pé\i{)):Po’ i¢j5 i,j=1,...,N, (24)

where the gain Kl((i) is determined by the KF (18).

Thus, the KF (18), the GMF (22), (23), and the Eq. (24)
completely define the new suboptimal multisensor filter. Note,

that in this filter the estimates X E‘)k are separated for different

types of sensors. Therefore, the kalman filters (18) can be
implemented in parallel for various values of 1= 1,...,N.



5. EXAMPLE: Identification of a Scalar

Unknown Parameter

To estimate the value of a scalar unknown @ from two
types of measurements corrupted by additive white Gaussian
noises, the system and measurement models are

Xy =X, X =0,

(»
k

v

1 2
Yi) =X tW aYi):Xk"'Wk )

where

(25)

w® ~N(0.r,), i=1.2; x, ~N(6.02).

. . . ~ KF
The KF gives the optimal mean-square estimate X, of an

unknown X, = € based on the overall measurements

_[Lo L@ ]T
Y, = [Yk Yl -
In this case
AKF _ AKF KF _ pKF
Xk = Xpqjr» and Pk\k-l - Pk—l\k—l
and the KF Eqgs. (18) take the form:
Q)] s KF
AKF _ AKF KF| Y X ~AKF _ p
Xk _Xk-1+Kk 2 AKF |? XO _97
Yo — X
KF
pKF nr, P KF _ 52
kK = ( )P KF ° 0o T Yoo
rlrz + 1‘1 + r2 k-1
T
KF
P
KF
e R (r, +r, )Pk-l (26)
k KF ’
5P

nr, + (rl +r, )Plf(f

For simplicity in Egs. (26) we denote

5 KF

CKF _ KF
X = Xy

and PEF = Pk‘k .

Using the “step-by-step” induction, we obtain the exact

KF
formula for the mean square error P, ,

2
n 2 O
PXF = E(-KF ) =—20
1+kr,0,
r, +r
r,=0"" @7
nr,

Together with the optimal KF (26), we apply the proposed
adaptive filter based on the GMF. Let denote the partial

estimates of the unknown X, = 6 based on the single
0 &M @
Yk

X, and )A(k
respectively. Using the system model with state X, and

measurements and yg) by

5>

single measurement yf(') ,

[ O]

Xpa =Xpn Y =X TWy
for 1 =1,2, we obtain the equations for 7’\{8) and )A(f(z) ,
R =50+ KLY R0 50 =7
. Plf}l . R
K=o, PO =f-kPRy,
r, + P
PP =0, i=12. (28)
The exact solutions of the Eqs. (28) take the form:
; 52 1‘-0'2
PO = E(a-g@) = 1%
r, +ko,
2
: IO .
K® :1—92, i=12. (29)
r, +ko,

Next, using the GMF (1), (3) at N =2, one can obtain the

. A GMF
estimate X, of the unknown X, = 0 as

S GMF _ (D5 (1) @5 @
X, =C. X, tc X[,
@ (12)
o _ Pk _Pk
LN (12) @°
P’ -2P 7 +P,
pO _pU2
2 k k
@ = (30)

1) (12) @’
P - 2P 4 P

where the error variances

(1n
K[k

(22)

A
and P}EZ) = Pk\k

A
P’ =P
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are determined by the formulae (29), and the cross-covariance

A
12 _ pa
P = Pk\k ’

according to the Eq. (24) is determined by the equation

Using (29)-(31), one can obtain the exact expressions for c

k E
Cg) , and Plilz) , respectively. We have
T. I
O _ 2 2 _ 1
Ck, =——— C =—)y
I'1 + I'2 I'1 + 1'2
11,0,
PlEIZ) _ 11299 (32)

(r1 +ko, )(rz +ko, )

At last, using (29), (32), and (4) one can has the error variance

. . ~ GMF
of the suboptimal estimate X~ ,

A
GMF  _ A GMF )2
Py = E( - Xy )’

2
GMF _ O p ) . G)
P, _ch P ¢y
ij=1
u>]2 ) M) @ pU2) [ <2)]2 ®
+ [ck P’ +2¢c,’cP. 7 +lc | P

or

2
Lr,0, I,

(rl+r2)2 1‘1+1(O'92

GMF _
Pk =

21, I,

" r+ ko’ \r+ ko’ +r +ko?
g g 2 g

(33)

Comparing the error variances (27) and (33), we have

2.2 4
11,0,

PGMF _PKF —
‘ - (rl +r2)

k
8 (rl + ka; )(r2 + koﬁ )[rlr2 + k(r1 +1, )O';J
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At the values of parameters
r,=1,1,=2amd o, =1
1 ) 0 >

we have

1

k_2 .

POV _PSF = 0.44%

The result show that the GMF yields suboptimal recursive
filter with good accuracy and certain well-defined
convergence properties. It provides the best balance between
computational

efficiency and desired estimation accuracy.

6. CONCLUSION

In this paper we present the GMF, which represents the
optimal linear combination of arbitrary number correlated
estimates. Each estimate is fused by the minimum mean
square error criterion. Based on the GMF new suboptimal
adaptive filters have derived. These filters have parallel
structure and are very suitable for parallel processing of
measurements. The obtained filtering algorithms reduce the
computational burden and on-line computational requirements.
The example demonstrate the efficiency and high-accuracy of
the proposed filtering algorithms.

These filters can be widely used in the different areas of
applications: industrial, military, space, communication, target
tracking, inertial navigation and others.
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