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1. INTRODUCTION 

EDMC is an extended version of Dynamic Matrix Control 

(DMC) that works on nonlinear processes. In this control 

algorithm, a linear approximation of the nonlinear model of 

the process is determined in each control interval applying a 

small perturbation on the control signal [1]. The main 

difference between ordinary and extended DMC is to how 

predict the unmodelled part of the process including the 

external disturbances. In contrary to ordinary DMC, this part 

of the process output is separated to predictable (difference 

between linear and nonlinear models outputs) and 

unpredictable (difference between the process and nonlinear 

model outputs) portions. The predictable portion is determined 

using iterative methods. Once the iterations converged the 

control moves are calculated using DMC formulas. The 

unpredictable portion is treated as in DMC. It has been shown 

in [1, 2] that the iterations are convergent and the closed loop 

system is stable if the following conditions are satisfied. 

1) Steady state gain of the process does not change sign 

2) Control move suppression coefficient is larger than zero 

3) Sampling time is long enough ( T )

4) Control horizon ( M ) is 1 

5) Set point is constant along the prediction horizon ( P ).

The main goal of the present work is to relax the third 

condition of the above list. The given prove in this paper is 

also applicable when the control horizon is longer than 1. 

Removing of these two conditions extends applicability of the 

existing stability theorem for wider rang of nonlinear 

processes. 

The paper is organized as follows. In Section 2, a brief 

overview of EDMC is given. Deriving of the stability 

condition for limited sampling time is discussed in Section 3. 

Section 4 contains materials related to the special cases and 

finally paper is concluded in Section 5. 

2. EDMC FORMULATION 

In this section a brief description of DMC and 

EDMC formulations are presented.
2.1 DMC formulation 

Output of a stable SISO system could be determined using 

the following discrete convolution model. 
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In which ia 's are the coefficients of the step response, u  is 

the control signal, u  is the control signal variation, and N is 

the number of samples that system reaches to the steady state. 

Any difference between the measured output and the one 

predicted by the model is represented as the external 

disturbance,
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The future outputs of the system can be predicted based on the 

following matrix-vector relation. 
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In which P  and M  are the prediction and the control 

horizons respectively. In compact form we have, 

dyuAy pastp             (4) 

In DMC, the control moves, u , are determined by the 

solution of the following optimization problem. 
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The cost function includes difference between the desired 

( dy ) and the predicted ( py ) outputs and the weighted control 
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moves as well (  is the weighting factor). In the unconstraint 

case solution of the problem is given by: 

dyyAIAAu pastdTT 1
       (6) 

pasty  is the free response of the system and is determined 

using its model. 

2.2 Extended DMC approach 

In EDMC, d  is not assumed to be completely unknown. It 

comprises from unpredictable disturbance (
extd ) that 

represents difference between system and its nonlinear model 

outputs and the predictable disturbance (
nld ), which is the 

difference between linear and nonlinear models outputs. This 

can be explained using the following equation. 

nlext ddd                (7) 

u  is computed from the similar formula as in DMC. 

However, since 
nld  (the known part of d ) depends 

nonlinearly on u , the problem is solved using iterative 

methods. The criterion for the convergence of the iterations is 

to reach the following equality. 

nlextpastelnl
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ely  and nl
y  are the predictions of the system output that are 

given by the linear and the nonlinear models. 

Equation (8) contains P  nonlinear equations for P

unknowns )(,),1( Pkdkd nlnl . Nonlinearity of the 

equations arises from the nonlinear relation that exists 

between nly and u  (and therefore u ). Iterative methods 

such as fixed-point iteration or secant method are used to 

solve the P  dimensional nonlinear vector equation. 

3. NEW STABILITY CRITERION FOR EDMC 

In this section we evaluate the stability criterion of SISO 

systems for 1M  case. Regarding the stability, we assume 

that the iterative computation of nl
d  in sample time k  has 

been converged. Our goal is to derive a relation between the 

present input, ku  and the previous input, 1ku .
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In which 1e  is a 1M  vector with all elements zero except 

the first element that is one. Note that for nominal system 

0
ext

d . To complete and simplify (9), the converged value 

of
nl
k 1d  should be determined. When the convergence is 

occurred the following equality is satisfied. 
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Output of the extended linear model 
ely  is obtained as 

follows.
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Use of the following definition, 

TT AIAAAA 12
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and equations (10) and (11) one can derive the following 

relation for 
nl
k 1d .
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Substitute for 
nl
k 1d  from (12) in (9), we have, 
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Using the following two matrix relation for 0A ,
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Equation (13) is simplified as, 
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When sampling time is assumed to be large enough )(T

[2], one can consider the following approximations. 
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Therefore (15) is further simplified as, 
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This equation is similar to the one derived in [2] but 

assumption 1M  is not used in this case. Therefore results 
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given in [2] for the stability of the closed loop system are also 

applicable for 1M .

In the sequel, analysis of the stability is continued without 

infinite sampling time assumption. We start from (15) and 

expand the right hand side of the equation based on 1e , A ,

sp
k 1y , and nl

k 1y  elements. 
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To examine the stability of a closed loop system that is 

characterized by (19), one can employ the Lyapunov 

linearization method. To this end, derivatives of the future 

outputs with respect to 1ku  are required. 
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To solve the problem, the linear approximations of )( iky nl

are used in the computation. 
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Let us use the following definitions. 
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Based on (20) and (21), iz  are determined as follows. 
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In which l  is a column vector and is defined as follows, 
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Substitute for iz  in (24) from (23) and with some 

manipulation, l  is reformulated as follows. 
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or in simple form it can be written as, 
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Equation (26) can be solved for l .
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Using definition of 0A , and the following relation, 
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From the first row of (24), 1z  is determined as follows. 
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According to the Lyapunov linearization method (or using 

the contraction mapping theorem), the closed loop system is 

stable if 11z . This is equivalent to have 0bAe 101 aT
.

To derive the above criterion, the sampling time is not 

considered long enough and also control horizon is higher than 

1 ( 1M ). The same line of computations can be followed to 

determine the similar condition in which a MIMO system is 

stable. 

4. SPECIAL CASES 

In this section in order to investigate mentioned stability 

criterion in detail, we consider some special cases. 
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or 021aa . This is compatible with the Peterson’s result [1] 

in which it is assumed that the steady state gain of the system 

does not have sign changes. 
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or equivalently, 
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5. CONCLUSIONS

A new closed loop stability criterion is proposed by which 

the Extended DMC controller can be employed for finite 

sampling time as well as higher control horizon. This 

improves existing result, which was based on the infinite 

sampling time and 1M  assumption. 

As a future work, the stability analysis can be extended for 

MIMO systems. Also the linear approximation that was used 

in the calculation of the Jacobean matrix (equations (21) and 

(22)) can be eliminated. Works in these two areas are in 

progress and results will be submitted latter.
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