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1.  INTRODUCTION 
 

An automobile loses running stability when it slips due to 
the rapid acceleration or braking. The driving force of 
automobiles is transmitted by the frictional force between the 
tires and the road surface. This frictional force is a function of 
the car-body’s weight and the friction coefficient between the 
tires and the road surface. The friction coefficient is also a 
function of the following parameters: the slip ratio determined 
by car-body speed, wheel speed and the condition of the road 
surface. Due to variations in this friction coefficient, the 
controlled object has uncertainty. As mentioned above, the 
traction control and antilock braking system (ABS) problems 
treated in this paper are non-linear and subject to disturbances 
and uncertainties. In the case of a control system designed for 
a controlled object with uncertainty, it is important to design a 
control system, which allow for uncertainties and the sliding 
mode control is known as one such approach [2]. 

Our objective is to develop a control system design to 
enhance the stability of the automobiles, especially during 
acceleration and braking. Generally, car-body speed is 
indispensable information for traction control and ABS. So, a 
disturbance observer is used to estimate the car-body speed 
since it is difficult to measure directly. That is: we used a 
simple method of calculating the car-body speed from a 
friction coefficientμestimated by the disturbance observer 
[1]. 

A non-linear observer to estimate the car-body speed from 
the output of the system (i.e. the wheel speed) has been 
discussed by Unsal and Kachroo. This work gave a 
comparison between extended Kalman filter and sliding 
observer. They showed that the usage of extended Kalman 
filter gave an unsatisfactory result. So, they replace the 
estimator by the sliding observer. However, they face the 
problem in determining the gain coefficient for the sliding 
observer even though the result is satisfactory. They use the 
trial-and-error method, which is difficult to set. The stability 
of the system is not discussed, but they only state the 
necessary condition in order to control the wheel slip [3]. 

For the implementation of the system, Hori et al. proposed 
two types of traction control technique of electric vehicle, 
which are the model following control (MFC) and the optimal 
slip ratio control. They demonstrate the effectiveness of the 
system by using the test vehicle. They confirmed that MFC 
could reduce its torque quickly when the motor speed is 
suddenly increased by the tire slip. However, the stability of 
their control system is not discussed [4]. 

As to date, the stability of the system that combines the 
vehicle system and the disturbance observer has not been 

proved yet. In this paper, we first prove the stability of the 
combined system divided into a controllable system and an 
estimated one. Furthermore, we propose a new control system, 
which uses a disturbance observer with the approach of sliding 
mode control. Finally, we show that the stability of the system 
is achieved from the satisfactory simulation results. The 
verification is done via simulation using MATLAB. 

 
2. CONTROLLED OBJECT 
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Fig. 1 Vehicle model.  
 

Consider a vehicle model depicted in Fig. 1. The equation 
of motion for this controlled model is expressed by 
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Friction coefficientμ is a non-linear function which has a slip 
ratioλ 

ω
ωλ rv /: −= . (2) 

For example, the µ-λ characteristic on a dry road can be 
expressed as shown in Fig. 2. And from Fig. 2, we defineμas 

λλλµ ⋅== )()( gkf m . (3) 
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Fig. 2 μ－λ characteristics. 

 
Substituting Eq. (2) into Eq. (3), friction coefficientμcan be 
expressed as 
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Here, using Frxv === :,:,: τθω , Eq. (1) is rewritten as 
follows:  
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Furthermore, we make the following equations from Eqs. (4), 
(5). 
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Here, the following torque system is added to the controlled 
model in Eq. (5): 

uTf =+ττ . (7) 
And we rewrite Eq. (7) as follows: 

)/1:,/1:( ff TbTauba =−=+= ττττ ττ . 
From the previous-shown equations, the block diagram of the 
controlled object can be drawn as below. 
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Fig. 3 Block diagram of the controlled object. 

 

3.     ESTIMATION OF THE CAR BODY SPEED 
BY A DISTURBANCE OBSERVER 

 
Since the car-body speed ν can not be measured directly, 

we estimate ν by a disturbance observer.  
Assuming 0=µ , the following equation is obtained 
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Following the Gopinath’s method, we choose a transfer 

function as 





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:S . Then, we obtain a minimal order 

observer as  
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From Eqs. (9), (10), the minimal observer which estimate μ 
can be expressed as 
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Then, from Eq. (11), the differential of µ̂  can be written as 
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By substituting Eq. (4) into Eq. (12), we obtain the following 
equation to express µ̂ . 
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Putting vv ˆ→ and µµ ˆ→  as the estimated values, Eq. (6) 
can be rewritten as  

µ̂ˆˆˆ 111 mbvav += ,  (14) 

where 11â  is the value with a perturbation. 
 

4.    COMBINED SYSTEM 
 
From Eqs. (6), (7), (13) and (14), the state-space equation 

can be expressed as 
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where rvvrvv /ˆ:ˆ,/: 00 == is defined. 
We choose a transform matrix T as follows: 
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Then, Eq. (15) can be written as 
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From Eq. (16), Fig. 4 is obtained. 
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If 1111 âa =  and the observer gain 0>>L , then 

0)/( 2111 →Lrbba mm  and Eq. (16) can be separated into a 
controllable and uncontrollable state value as expressed as 
follows: 
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Here, η  is defined as oo vve ˆ: −= .  

If the following control law is applied 
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If ),( BA is controllable (see Appendix), and 22A  takes a 
negative value (that is: if the combined system is stabilizable), 
we can stabilize the system expressed in Eq. (18). Here, 22A  
takes a negative value, since it is considered as the air 
resistance of the car, etc. 

From the result above, we found out that the effect of the 
traction control and ABS depends on the air resistance of the 
car. 
 

5.    SLIDING MODE CONTROL 
 

When we have enough time to make e in Eq. (17) becomes 
zero. Then, Eq. (17) can be expressed as 

dmBBuAxx µ++= . (19) 
By considering only a linear term in Eq. (19), the equation for 
a reference model is obtained as 

rrr BuAxx += . (20) 
Then, by subtracting Eq. (20) from Eq. (19), an error system 
can be expressed by 

.  rere

dmeee

uuuxxx
BBuAxx

−=−=
++=

:,:
µ

 (21) 

Defining a sliding surface as eGxS = , the control law eu  as 

)(0 ∞→→ tS  is separated into a linear term 1u  and a 

non-linear term 2u , which is 21 uuue += . 
 
5.1 Linear Controller 

From Eq. (21), we assume a non-linear term 0=dµ . Then, 
we obtain 
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where 
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Next, we consider 0=S : 
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Then, a linear feedback gain F can be expressed as 
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By substituting Eq. (24) into Eq. (22), the following equation 
is obtained 
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The eigen values of A~  have the same number of zeroes as 
the input variables and the zeroes of BAsIG 1)( −− . And, it is 
known that they are stable when  

PBG T= , (26) 
where P  is a positive definite solution which satisfy the 
Riccati equation: 

00 >=+−+ QQPPBBPAPA TT . (27) 
 

5.2 Non-linear Controller 
In order to stabilize a non-linear control system, we 

consider a Lyapunov function as 
SSSV T=)( . (28)
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From Eq. (28), the differential of )(SV  can be expressed as 

( ) ( ) . GBGBuSSGBGBuSV dm
TT

dm µµ +++= 22)(  (29) 
Substituting 
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we obtain the following equation to express  
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Here, when satisfying 
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Therefore 0→S  as ∞→t  is obtained. This clearly 
indicates that this control system is stable.  

Fig. 5 shows the sliding mode control system, which is 
obtained from the above results. 

 

µ

ω

F
( )41 FF～～～～

-
+

+

-

+
-

+

-

Road surface
model

µ

Wheel model

Torque

rττ −

R

Fx

ω

rτ

Vehicle

Observer

ω µ̂ Car body
model

G

( )41 GG～～～～

Ge

ov ov̂
Car body

model

fsT+1
1

S
1

J
1

J
Wr τ

µ

λ

τ

-

-

-
+

+

+

u

( )rrττ −

rω
rv

Reference
Model

rµ rr

rrr

Fxu
BuAxx

−=
+=

 
Fig. 5 Sliding mode control system. 

 
6.     SIMULATION RESULTS 

 
Simulations were carried out with all the parameters were 

set as follow: 
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For mk in Eq. (3), the following value is derived from Fig. 2. 
52.0/0.1 ==mk  

Weighting matrix Q in the Riccati equation is chosen as  
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Then, the matrices for a linear feedback gain F and a 
non-linear feedback gain G  is obtained  
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Setting 1500=γ  that satisfy  
31065.0: −×<≤ ddmGB µγµ , 

we obtain the switching gain 8.34−=R . 
The simulation results for a frozen road (μ=0.1) are shown 

in Figs. 6-8. An Input torque τ  is assumed as follows: an 
accelerator pedal is stepped on so as to give a torque of 500 
Nm at 0 sec, the input torque is reduced to 0 Nm after 15 sec, 
and the reverse torque of 400 Nm is given after 25 sec. 

Fig. 6 shows the speed response for the non-control case. 
This figure indicates that the wheel speed is extremely higher 
or lower than the car-body speed. 
 

 
Fig. 6 Speed response (Non-control). 

 
The simulation results for sliding mode control designed at 

1500=γ are plotted in Figs 7. The response of the wheel 
speed and the car-body speed is shown in Fig. 7(a). While, the 
response of the sliding surface S and the switching function 
are plotted in Fig. 7(b) and 7(c) respectively. From Fig. 7(a), it 
is clearly shown that the wheel speed is exactly follows the 
car-body speed. It verifies a very satisfactory performance as 
compare to the non-control case depicted in Fig. 6. 

 

 
(a) Speed response. 

 

 (b) Sliding surface S response. 
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(c) Switching function S/||S||. 

Fig. 7 Sliding mode control ( 1500=γ ). 
 

The simulation results for sliding mode control, which is 
designed at 150=γ (that is: the estimate of uncertainty is 
smaller than the actual value) are shown in Fig. 8. From Fig. 
8(b), it is shown that the sliding surface S is disturbed during 
acceleration and deceleration. Then, we can see that the 
switching in Fig. 8(c) hardly occurs. 
 

 
(a) Speed response. 

 

 
(b) Sliding surface S response. 

 

 
 (c) Switching function S/||S||. 

Fig. 8 Sliding mode control ( 150=γ ). 
 

Next, the verification of an automobile performance when 
the road condition suddenly changes from the dry road 
(μ=0.8) to the wet road (μ=0.1) is done. We assume that the 
transition happens at 20 sec after the start. The speed response 
for the non-control case is plotted in Fig. 9. It is shown that the 
wheel speed follows the car-body speed on the dry road. 
However, the tires slip just after the transition. 

 

Fig. 9 Speed response (Non-control, μ=0.8 - 0.1). 
 

Then, the performance verification is done using the 
proposed controller. As indicated in Fig. 10, the performance 
of automobile is good even though the transition on the road 
condition happened.  
 

 
(a) Speed response. 

 

(b) Sliding surface S response. 
 

(c) Switching function S/||S||. 
Fig. 10 Sliding mode control ( 1500=γ ,μ=0.8-0.1). 

 
Fig. 11 shows the deviation e  between the estimated value 

0v̂  and the car-body speed 0v . From Fig. 11, we can 
confirm that if 011 <a  in Eq. (16), e  is almost 0, while if 

011 >a , e  takes a large value. This shows that 0v̂  and 0v  

are equal when 011 <a , but 0v̂  and 0v  are not equal 
when 011 >a . Here, even though 011 <a , the deviation e  
is not 0 because the car is accelerating. 
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(a) 11a := -6.6667e-006 (negative). 

 

 
(b) 11a := 0.3 (positive). 

Fig. 11 Relationship of 0v̂ and 0v . 
 
This unstable condition (when 3.011 =a  is taken) is also 
shown in the following figure. From Fig. 12(a), it is clearly 
shown that the speed response is unstable even though it is 
under sliding mode control. Switching also hardly occurs as 
can be seen in Fig. 12(c). 

 

 
(a) Speed response. 

 
(b) Sliding surface S response. 

 

 
(c) Switching function S/||S||. 

Fig. 12 Sliding mode control ( 3.011 =a ). 
 

7.    CONCLUSION 
 

The proposed sliding mode controller showed the very 
satisfactory simulation results. And, we found out that the 
effect of the traction control and ABS depends on the air 

resistance of the car. A further study based on the experiment 
will be done to check the feasibility of the proposed controller. 

However, the implementation of sliding mode control 
requires a certain sampling interval in which the control is 
constant. Thereby the switching frequency is limited by the 
sampling frequency, and the chattering or oscillation problems 
may arise [5]. Therefore, the implementation of discrete 
sliding mode control in our system will be considered in future 
study. 
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APPENDIX 

 
1. The controllability of ),( BA  in Eq. (18): 

4rank(Uc) =  is obtained from 
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  The result above shows that ),( BA  is controllable. 
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