밀도 성층 유동 해석을 위한 가상경계법

윤동혁[†]·양경수^{*}·황종연^{**}·이승수^{***}

An Immersed-Boundary Method for Simulation of Density-Stratified Flows

Dong-Hyeog Yoon, Kyung-Soo Yang, Jong-Yeon Hwang and Sungsu Lee

Key Words: Immersed Boundary Method(가상경계법), Density source/sink(밀도 원천/흡입), Density-Stratified Flow(밀도 성층류), Finite Volume Method(유한 체적법)

Abstract

An immersed boundary method for simulation of density-stratified flows is developed and applied to computation of viscous flows over two-dimensional obstacles in a bounded domain under stable density stratification. Density sources/sinks are introduced on the body surface. Two obstacle shapes are used, a vertical barrier and a smooth cosine-shaped hill; weak stratification, defined by $K=ND/\pi U \leq 1$, where U, N, and D are the upstream velocity, buoyancy frequency, and domain height, respectively, is considered. The results are consistent with other authors' calculations, and shed light on computation of density-stratified flows in complex geometries.

기호설명

U : 균일한 입구 속도	Re : Reynolds \uparrow (= $\rho_0 Uh/\mu$)
h : 물체의 높이	Fr : Froude $\stackrel{\frown}{\uparrow}$ (= U/Nh)
D : 계산 영역 높이	Sc : Schmidt \uparrow (= ν/k_m)
N : 부력 진동수	K : 성층 계수 (= ND/πU)
g : 중력 가속도	<i>f_i</i> : 운동량 부가
ρ ₀ : 기준 밀도	q : 질량 원천/흡입
k_m : 분자확산계수	F : 밀도 원천/흡입
<i>C</i> _d : 항력계수	
ν : 동점성계수	
u_i : 2차원 직교 좌표계 속도 성분	1. 서 론

↑ 인하대학교 대학원 기계공학과
 * 교신저자, 인하대학교 기계공학부
 E-mail :ksyang@inha.ac.kr
 TEL : (032)860-7322 FAX : (032)868-1716
 ** 인하대학교 대학원 기계공학과
 *** 충북대학교 구조시스템공학과

밀도 성층 유동에 대한 이론적 연구와 수치 해 석적인 연구는 국외에서 지금까지 많이 이루어지 고 있으나 국내에서는 거의 찾아 볼 수 없다. 밀 도 성층과 관련된 부력은 기계공학적 측면 뿐 만 아니라 건축, 토목, 환경, 해양, 기상과 관련된 유 동에서 매우 중요한 역할을 하는 유동 인자이다. 선형적으로 형성된 밀도 구배를 갖는 Boussinesq 유체에 대한 연구가 그 동안 많은 연구자들에 의 해서, 벽면부착 언덕(hill) 위를 지나는 유동^{(1),(2),(3)} 이나 구(sphere)^{(4),(5)}와 같은 형상의 장애물 주위의 유동에 대하여 수행되어 왔다. 밀도 성층류가 장 애물을 지날 때 수직으로 교란된 유체는 하류에 서 lee wave를 발생시키며 상류에서는 columnar disturbance를 발생시키게 된다.

본 연구에서는 직교좌표계로 복잡한 형상의 물 체를 지나는 유동 해석이 가능한 가상경계법을 2 차원 밀도 성층류에 적용하고 검증하였다. 운동 량 방정식에서의 운동량 부가와 질량 원천/흡입 은 Kim등⁽⁶⁾이 자세히 기술하고 있으며 본 연구에 서는 밀도 방정식에 밀도 원천/흡입을 도입하여 밀도 성층유동 해석에 적합한 새로운 가상경계법 을 제시하고 타당성을 검증하였다. 검증 계산으 로 낮은 Re에서 Paisley⁽⁷⁾가 계산한 cosine hill (*Re* = 100)과 vertical barrier(*Re* = 50) 위를 지나는 유동을 계산하였으며 *K*의 변화에 따른 즉, 밀도 구배의 변화에 따른 유동 변화를 비교, 검증하였 다.

2. 수치 해석 기법

2.1 지배 방정식

Boussinesq 근사가 도입된 비압축성 밀도 성층 유동의 지배 방정식은 다음과 같이 연속 방정식, 운동량 방정식, 밀도 방정식으로 구성된다.

$$\frac{\partial u_j}{\partial x_j} = 0 \qquad \qquad j = 1,2 \quad (1)$$

$$\rho_0 \frac{\partial u_i}{\partial t} + \rho_0 \frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial p'}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_j \partial x_j} - \rho' g \delta_{i2}$$
(2)

$$\frac{\partial \rho'}{\partial t} + u_j \frac{\partial \rho'}{\partial x_j} = -u_2 \frac{\partial \rho_b}{\partial x_2} + k_m \frac{\partial^2 \rho'}{\partial x_j \partial x_j}$$
(3)

식(1), (2), (3)에서 u_i 는 흐름방향(streamwise, x), 수직방향(vertical, z)의 속도 성분이 각각 u, w 인 속도 벡터이다. ρ_0 는 기준 밀도(reference density), $\rho_b(z)$ 는 초기 밀도 분포이다. μ 는 점성계수, k_m 는 분자확산계수, g는 중력가속도, δ_{ij} 는 Kronecker delta 함수를 의미한다. p'과 ρ' 은 각각 순간 압 력 변동분, 순간 밀도 변동분이며 다음과 같이 정의 된다.

$$\rho = \rho_b(z) + \rho', \qquad p = p_b(z) + p'$$
(4)

식(1), (2), (3)을 기준 속도 U, 기준 길이 h, 기 준 밀도 Po로 무차원하고 가상경계법을 이용하여 운동량 부가(fi)와 밀도 원천/흡입(F), 그리고 질 량 보존을 만족시키기 위한 질량 원천/흡입(q)을 도입하면 다음 식과 같이 된다.

$$\frac{\partial u_j}{\partial x_j} - q = 0$$

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$
(5)

$$\frac{\rho}{Er^2}\delta_{i2} + f_i \tag{6}$$

$$\frac{\partial \rho}{\partial t} + u_j \frac{\partial \rho}{\partial x_j} + u_2 = \frac{1}{ReSc} \frac{\partial^2 \rho}{\partial x_j \partial x_j} + F \tag{7}$$

식 (5), (6), (7)에서 u_i , ρ , p는 각각 무차원화된 속도벡터, 무차원화된 순간 밀도 변동분, 무차원 화된 순간 압력 변동분이다. 무차원 파라메터 Re, Fr, Sc는 각각 Reynolds number(= $\rho_0 Uh/\mu$), Froude number(= U/Mh), Schmidt number(= ν/k_m)로 정의 되었다. 한편 성층 계수 $K = ND/\pi U$ 로 정의되고 N은 buoyancy frequency로 $N^2 = -(g/\rho_0)d\rho_b/dz$ 로 정의되었다. $K = D/\pi hFr$ 로 쓸 수 있으며 본 연구 에서는 K의 변화에 따른 유동 변화를 가상경계 법으로 검증하였다.

각 지배 방정식은 유한체적법(Finite Volume Method)으로 차분되었다. 공간 차분은 운동량 방 정식에 대하여 중앙 차분법, 밀도 방정식에 대하 여 QUICK을 사용하였으며 시간 차분은 운동량 방정식에서 대류항에 대하여 3차 정확도의 Runge-Kutta 방법으로 explicit하게 적분하였고 점 성항은 Crank -Nicholson 방법으로 implicit하게 적 분이 수행되었다. 연속방정식과 운동량 방정식을 분리하기 위하여 Fractional Step 기법이 사용되었 다. 밀도 방정식에 대한 시간차분 역시 대류항은 3차 정확도의 Runge-Kutta 방법으로 확산항은 Crank- Nicholson 방법으로 적분되었으며 이를 정 리하면 다음과 같다.

$$\frac{\widehat{u_i}^k - u_i^{k-1}}{\bigtriangleup t} = \frac{\alpha_k}{Re} L(\widehat{u_i}^k) + \frac{\alpha_k}{Re} L(u_i^{k-1}) - \gamma_k N(u_i^{k-1}) - \zeta_k N(u_i^{k-2})$$
(8)

$$-2\alpha_k \frac{\partial p^{k-1}}{\partial x_i} - 2\alpha_k \frac{\rho^{k-1}}{Fr^2} \delta_{i2} + f_i^k$$

$$\frac{\partial^2 \psi^k}{\partial x_i \partial x_i} = \frac{1}{2\alpha_k \triangle t} \left(\frac{\partial \widehat{u_i}^k}{\partial x_i} - q^k \right) \tag{9}$$

$$\frac{u_i^k - \hat{u_i^k}}{\triangle t} = -2\alpha_k \frac{\partial \psi^k}{\partial x_i} \tag{10}$$

$$\frac{\rho^k - \rho^{k-1}}{\triangle t} = \frac{\alpha_k}{ReSc} L(\rho^k) + \frac{\alpha_k}{ReSc} L(\rho^{k-1})$$

$$-\gamma_{k} N(\rho) - \zeta_{k} N(\rho) - 2\alpha_{k} u_{2} + r$$

$$k = 1 + \rho^{k-1} - \rho^{k} + \mu - \alpha_{k} \Delta t - \partial^{2} \psi^{k}$$
(11)

$$p^{k} = p^{k-1} + \frac{\rho^{k-1} - \rho^{k}}{Fr^{2}} x_{2} + \psi^{k} - \frac{\alpha_{k} \Delta t}{Re} \frac{\partial^{2} \psi^{k}}{\partial x_{j} \partial x_{j}}$$
(12)

여기서 $L() = \partial^2()/\partial x_j \partial x_j$, $N() = \partial u_j()/\partial x_j$ 이며 $\hat{u_i}$ 과 ψ 는 각각 중간 단계 속도와 pseudo-pressure이 다. 또한 k는 substep의 index이며 α_k , γ_k , ζ_k 는 RK3의 계수로 값은 다음과 같다.

$$\begin{aligned} &\alpha_1 = 4/15, \quad \gamma_1 = 8/15, \quad \zeta_1 = 0; \\ &\alpha_2 = 1/15, \quad \gamma_2 = 5/12, \quad \zeta_2 = -17/60; \\ &\alpha_3 = 1/6, \quad \gamma_3 = 3/4, \quad \zeta_3 = -5/12. \end{aligned}$$

식 (7), (8)에서 운동량 부가 f_i 와 질량 원천/흡 입 q에 대한 자세한 수치적 기법은 Kim등⁽⁶⁾의 논 문을 참조하기 바란다.

2.2 계산 영역과 경계 조건

모든 경계조건은 Fig. 1에서 나타낸 바와 같이 tank 안에서 물체를 끄는 실험을 묘사하고 있는 Paisley⁽⁷⁾의 계산 결과와 비교하기 위해 설정하였 다. 물체 표면에서는 no-slip 조건과 순간 밀도 변 동분(perturbation density) p가 0 인 조건을 사용하 였다. 입구와 출구에서는 각각 Dirichlet 경계 조 건과 대류 경계 조건을 사용하였고, 계산 영역의 위쪽 면에서는 u = U, w = 0, $\partial \rho / \partial z = 0$, 아래쪽 면에서는 $\partial u/\partial z = 0$, w = 0, $\partial \rho/\partial z = 0$ 인 경계 조 건을 각각 사용하였다. cosine hill 형상은 $h(x) = 0.5(1 + cos(\pi x/1.8))$ 로 결정하였다. Fig. 2 와 같이 직교좌표계를 사용하고 격자수는 354×96이다.

Fig. 1. Physical configurations and boundary conditions for the flows over (a) a vertical barrier and (b) a cosine hill.

2.3 Density source/sink

식 (11)에서 ρ^k를 구하기 위해 F^{*}를 미리 알아 야 하며 F^{*}는 물체 표면에서의 경계조건을 만족 하도록 결정해야 한다.

밀도 원천/흡입 값을 구하기 위하여 식(7)의 대 류항을 RK3 로 확산항을 forward Euler 방법으로 차분하면

$$\frac{\rho^{\widetilde{k}} - \rho^{k-1}}{\bigtriangleup t} = \frac{2\alpha_k}{ReSc} L(\rho^{k-1}) - \gamma_k N(\rho^{k-1}) - \zeta_k N(\rho^{k-2}) - 2\alpha_k u_2^k + F^k$$
(13)

Fig. 2. Computational domain and grid system

이식을 밀도 원천/흡입을 가하는 점에서의 F^{*} 에 대한 식으로 정리하면 다음과 같다.

$$F^{k} = \frac{\overline{\rho^{k} - \rho^{k-1}}}{\bigtriangleup t} - \frac{2\alpha_{k}}{ReSc}L(\rho^{k-1}) + \gamma_{k}N(\rho^{k-1}) + \zeta_{k}N(\rho^{k-2}) + 2\alpha_{k}u_{2}^{k}$$
(14)

식 (14)에서 ρ^{k} 는 밀도 원천/흡입을 가하여 원 천/흡입하는 점에서 얻고자 하는 순간 밀도 변동 분(perturbation density)이다. F^{k} 의 위치가 물체 표 면과 일치하는 경우는 ρ^{k} =0(즉 순간 밀도 변동분 이 0 이 되도록) 이지만 일치하지 않으면 linear와 bilinear interpolation 이 필요하다.

Fig. 3에서와 같이 linear interpolation의 경우 물 체 표면에서의 경계 조건을 만족하기 위해 $\overline{\rho_1^k} = -\overline{\rho_c^r}$ 가 된다. Fig. 3.을 식으로 정리하면 다 음과 같다.

$$\overline{\rho_{1}^{k}} = \begin{cases} -\frac{l}{z_{A}} \widetilde{\rho_{A}^{k}} & for \quad 0 < l \le z_{A} \\ -\frac{(z_{B}-l)\widetilde{\rho_{A}^{k}} + (l-z_{A})\widetilde{\rho_{B}^{k}}}{z_{B}-z_{A}} & (15) \\ & for \quad z_{A} < l \le z_{B} \end{cases}$$

Bilinear interpolation의 경우는 Fig. 4와 같으며 식으로 정리하면 식(16) 같다.

Fig. 3. Linear interpolation scheme for density source/sink in case of $\rho = 0$ at the wall; (a) $0 < l \le z_A$, (b) $z_A < l \le z_B$. Here C is the density source/sink point. A and B are respectively, the first and second grid points outside the body surface.

Fig. 4. Bilinear interpolation scheme for density source/sink

$$\overline{\rho_1^k} = -\left[\alpha \left(1-\beta\right) \widetilde{\rho_2^k} + (1-\alpha)(1-\beta)\widetilde{\rho_4^k} + (1-\alpha)\beta \widetilde{\rho_4^k}\right] / \alpha \beta$$
(16)

식 (16)에서 α , β 는 각각 $\alpha = (x_3 - x_p)/(x_3 - x_1),$ $\beta = (z_3 - z_p)/(z_3 - z_1)$ 이다.

3. 수치 해석 기법의 검증

3.1 Flow over the cosine hill

Re=100, Sc=1000에서 2D 계산을 수행하였으며 Fig. 5는 K의 변화에 따른 유선의 변화를 보여준 다. K=0.0인 경우는 basic 밀도 구배가 없는 경우 로 Neutral flow이며 K가 증가함에 따가 basic 밀 도 구배가 커진다. 본 연구에서는 Pasiley⁽⁷⁾의 연 구 결과와 비교하고자 K=0.0, K=0.5, K=0.8, K=1.0에 대하여 계산을 수행하였다.

Fig. 5. Flow over the cosine hill, Re=100. (a) $Fr = \infty$, K = 0.0 (neutral flow); (b) Fr = 3.180, K = 0.5; (c) Fr = 1.989, K = 0.8; (d) Fr = 1.592, K = 1.0

Fig. 6. Cosine hill, Re=100. (a) normalized reattachment length; (b) normalized drag coefficient.

K가 증가함에 따라 Fig. 5에서와 같이 유동장 에서 많은 차이를 보이고 있으며 K=1.0인 경우 Pasiley⁽⁷⁾논문에서와 같이 Lee wave가 분명하게 보이고 있다. 또한 재부착 길이도 점차 줄어드는 경향을 보이고 있어 Pasiley⁽⁷⁾의 계산결과와 매우 유사함을 알 수 있다. Fig. 6은 neutral flow 에서 의 *C*₄와 재부착 길이로 normalize된 결과로 K가 증가함에 따라 *C*₄가 감소하다가 K=1.0인 경우 *C*₄가 증가하는데 반해 재부착 길이는 계속 감소 하는 Paisley⁽⁷⁾의 계산 결과와 일치된다.

3.2 Flow over the vertical barrier

Re=50, Sc=1000에서 계산하였으며 Fig. 7에서 K의 변화에 따른 유선의 변화를 나타내었다. 가 상경계법으로 vertical barrier 형상을 구현하기 위 해 매우 얇은 판으로 가정하고 운동량 부가, 질 량 원천/흡입, 밀도 원천/흡입을 적용하였다. cosine hill의 경우와 비슷하게 K가 증가함에 따라 재부착 길이가 감소하며, K=1.0 일 때 장애물 후 류에서 lee wave가 관찰되어 진다.

Fig. 7. Flow over the vertical barrier, Re=50. (a) $Fr = \infty$, K = 0.0 (neutral flow); (b) Fr = 3.180, K = 0.5; (c) Fr = 1.989, K = 0.8; (d) Fr = 1.592, K = 1.0

Fig. 8은 K의 변화에 따른 재부착 길이와 항력 계수의 변화를 보여준다. Fig. 8 (a)와 (b)에서 보 는 바와 같이 cosine hill에서의 K에 따른 Ca변화 와는 달리 Ca가 계속 감소하는 것을 알 수 있으 며 이는 Paisley⁽⁷⁾의 결과와 일치함을 알 수 있다.

Fig. 8. Vertical barrier Re=50. (a) normalized reattachment length; (b) normalized drag coefficient.

4. 결 론

본 연구에서는 복잡한 물체 주위의 유동장을 직교좌표계로 해석할 수 있는 가상경계법을 안정 한 밀도 성층 유동에 적용하고자 밀도 원천/흡입 을 이용한 새로운 기법을 도입하였다.

2개의 다른 유동장(cosine hill, vertical barrier)에 가상경계법을 이용한 밀도 원천/흡입을 적용하였 을 때, cosine hill 위의 유동에서 K=0.8에서 항력 계수가 가장 작아지는 critical Fr를 검증 하였다. 또한 재부착 길이는 계속 작아지는 결과를 얻어 Paisley⁽⁷⁾의 계산과 일치 하였다. 또한 vertical barrier 의 경우 K=1.0까지 증가함에 따라 항력 계수와 재부착 길이가 모두 계속 작아지는 경향 을 보였고, 그 크기들도 Paisley⁽⁷⁾계산 결과와 작 은 오차 범위 내에서 일치하여 가상경계법을 이 용한 밀도 성층유동 계산의 타당성을 얻었다.

후 기

본 연구는 한국과학재단 목적기초연구 (R01-2002-000-00060-0) 지원으로 수행되었다.

참고문헌

- (1) Eiff, O. S. and Bonneton, P., 2000, "Lee-wave breaking over obstacles in stratified flow", *Physics of Fluids*, Vol. 12, No. 5, pp. 1073~1086.
- (2) Gheusi, F., Stein, J. and Eiff, O. S., 2000, "A numerical study of three-dimensional orographic gravity-wave breaking observed in a hydraulic tank", *J. Fluid Mech.*, Vol. 410, pp. 67~99.
- (3) Uchida, T. and Ohya, Y., 1997, "A numerical study of stably stratified flows over a twodimensional hill", *Journal of Wind engineering and industrial aerodynamics*, Vol. 67, pp. 493~506.
- (4) Hanazaki, H., 1988, "A numerical study of three-dimensional stratified flow past a sphere", *J. Fluid Mech.*, Vol. 192, pp. 393~419.
- (5) Lee, S., Kim, H. S., Lee, Y. G., 2002, "Effects of stratification on generation of unsteady vortex downstream of a sphere", *Wind Engineering*

Institute of Korea, Vol. 6, No. 1.

- (6) Kim, J., Kim, D. and Choi, H., 2001, "An immersed-boundary finite-volume method for simulations of flow in complex geometries", *Journal of Computational Physics*, Vol. 171, pp. 132~150.
- (7) Paisley, M. F., 1997, "Multigrid computation of stratified flow over two-dimensional obstacles", *Journal of Computational Physics*, Vol. 136, pp. 411~424.
- (8) Paisley, M. F., 1998, "Comparison of Multigrid methods for neutral and stably stratified flows over two-dimensional obstacles", *Journal of Computational Physics*, Vol. 142, pp. 581~610.
- (9) Hwang, R. R., Lin, S. H., 1992, "On larminar wakes behind a circular cylinder in stratified fluids", *Transactions of the ASME*, Vol. 114, pp. 20~28.