양 방향 홀로그래피를 이용한 분무 특성 해석 시스템

추연준[†]·강보선*

Two-Side Holography System for the Measurements of Spray Characteristics

Yeon-Jun Choo, Bo-Seon Kang

Key Words:Holographic Velocimetry(흘로그래피 속도계), Two-side Holography(양방향 홀로그
래피), Image Correlation(영상 상관관계), Image Focal Plane(영상 초점면).

Abstract

The holographic velocimetry system has a significant potential for the measurements of three dimensional velocities of particles. In this study, orthogonal two-side holography system was developed to obtain three dimensional velocities and sizes of spray droplets. To get high quality of reconstructed images, singe-exposure holography at two time moments and two orthogonal sides was adopted instead of multi-exposure, single-side holography. From three dimensional velocities and sizes of each droplet was extracted using the PTV algorithm. To determine the position of particles in the optical axis, a new focusing parameter was introduced based on the correlation between two droplet images at the same distance. The measured results by holography system were compared with those by the PDPA.

1. 서 론

복잡한 유동의 특성을 파악하기 위해서는 유동 의 속도장을 측정할 수 있는 계측시스템이 절대 적으로 필요하며, 다양한 속도 측정 방법 및 관 련 제품 등이 개발되어 사용되고 있다. 특히, 유 동장에 영향을 주지 않는 광계측 시스템은 레이 저와 프로세서의 급속한 발전에 힘입어, 날로 새 로워지고 있다. 또한, 3차원적인 유동 특성을 파 악하기 위한 여러 광계측 시스템이 상업적으로도 널리 이용되고 있으며 대표적인 계측시스템으로, LDV(Laser Doppler Velocimetry), Stereoscopic

↑ 전남대학교 대학원 기계공학과 * 전남대학교 기계시스템공학부 E-mail : bskang@chonnam.ac.kr TEL : (062)530-1683 FAX : (062)530-1689 PIV(ParticleImageVelocimetry)PDA(PhaseseDopplerAnalyzer),HPV(HolographicParticleVelocimetry)등이이용되고있다. 각 계측시스템은 각각의장단점및제약 조건때문에, 응용야에따라선택적으로사용되고있다.

HPV는 3차원 입자 정보를 홀로그래피를 이용 하여 저장한 뒤, 이를 재생하여 입자 변위를 측 정, 속도장을 도출하는 시스템이다.^(1,2) 최근 활발 한 연구가 진행중인 HPIV(Holographic Particle Image Velocimetry)는, 기존 PIV 기법과 홀로그래 피를 접목한 방법으로, 기록된 입자간의 상관관 계로부터 3차원 속도장을 구한다.⁽³⁾ 하지만, 이상 유동이나, 분무 특성 해석을 위한 분야에서는 HPIV와 같이 검사 체적의 유동장 계측보다는, 개 별 입자의 속도, 크기, 형상 등의 정보가 필요하 다. 이와 같이 개별 입자들의 위치와 형상에 관 한 정보를 획득하기 위해서는, 이미지 처리 방식 을 선택하는 것이 효과적이다. 하지만, 입자 이미 지 처리 방식에 대한 연구는, 입자 직경 측정에 대해서는 많이 연구되었지만, 입자 속도 측정, 특 히 입자의 3차원적 속도 측정과 관련된 연구^(4,5) 는 많지 않은 상황이다.

본 연구에서는 분무 입자의 3차원적 거동과 직 경 정보를 얻기 위해 홀로그래피 기법을 적용하 였다. 재생된 영상의 해상도를 높이기 위해, 한 필름에 다중 노출시킨 기존 방법과 달리, 서로 수직인 양 방향에 위치한 필름에 단일 노출시키 는 방법을 이용하였다. 또한, 개별 분무 입자의 광축 방향 위치를 정확히 결정할 수 있는 새로운 입자 초점면 판단 기준을 제시하였다. 개별적으 로 인식된 입자들의 3차원적 위치 정보를 이용하 여, 입자 추적 알고리즘을 적용하여 개별 입자들 의 3차원적 속도를 추출하였으며, 측정 결과의 검증을 위해 PDA를 이용한 계측 결과와 비교하 였다.

2. 실험 방법

2.1 기록시스템

본 연구에서 이용된 기록 시스템은 전형적인 off-axis 방법이며, 심도를 줄이기 위해 산란판 조 사(diffuser illumination)를 이용하였다. 수직 양 방 향 홀로그래피(orthogonal two side holography)를 위해서, 서로 수직한 방향으로 각각의 기록 조건 이 같은 두 쌍의 홀로그래피 광학시스템이 설치 되었다. 또한, 비점 수차의 영향을 줄이기 위해 서, 홀로그래피 필름이 물체광과 참조광이 이루 는 각도의 이등분각과 수직하도록 위치하였다. 다중 노출에 의해 재생 영상의 해상도가 저하되 는 것을 피하기 위해서, 두 순간 각기 다른 홀로 그램에 기록하는 단일 노출 두 순간 기록(single exposure and double instance recording)을 이용하 여 두 홀로그램에 각기 다른 한 순간만을 기록하 도록 하였다.

위와 같은 양 방향 홀로그래피에서 유의하여야 할 점은, 두 홀로그램에서 재생된 입자 영상의 좌표가 서로 일치하여야 한다는 것이다. 홀로그 램 기록, 재생 및 재생 영상 기록 과정에서 발 생할 수 있는 다양한 오차의 수정을 위해서 동시 -양 방향 홀로그래피 실험이 선행되었다. 이를 통 하여 양 방향에서 결정한 입자들의 좌표를 수정 하는 해석 과정을 완성하고, 이 때 얻어진 좌표 수정 정보를 두 순간-양 방향 홀로그래피에

Fig. 1 Holographic recording system

적용하여, 양방향 홀로그래피에서와 같이 오차를 수정하였다. Figure 1은 본 연구에서 이용된 기록 시스템이다. 양 방향 모두 동일한 기록 조건을 가지며, 광분리기(beam splitter)를 이용한 간단한 조작만으로 동시-양 방향과 두 순간-양 방향 홀로 그래피를 수행할 수 있도록 하였다.

2.2 재생시스템

재생 영상을 획득하는 장치는 정교하게 이송할 수 있는 이송장치와 영상을 획득하는 카메라로 이루어져 있다. 본 연구에서는 렌즈에 의해 발생 하는 2차 심도의 영향을 배제하고, 렌즈의 제한 된 구경(aperture)에 의한 스페클 잡음의 크기를 줄이기 위하여, 렌즈를 이용하지 않고, CCD 센서 를 재생되는 영상 공간에 직접 노출시키는 방법 을 이용하였다. 이러한 방법은 센서 직접 노출을 이용함으로, 획득 영상의 크기와 해상도는 CCD 센서의 규격에 의해서만 결정된다. 이미지 획득 은 광축과 직각인 평면에서 카메라를 수직, 수평 방향으로 이동하며 획득된 영상들을 조합하여 한 평면에서의 영상으로 간주하고, 동일 작업을 광축 방향 즉, 깊이 방향(z)을 따라서 일정 간격 (Δz)으로 이동하며 획득한 영상을 조합하여 3차 원 영상을 복원한다. 광축(2 축) 방향으로 영상 의 평면 주사 간격의 결정은 해석 과정의 효율

Fig. 2 Reconstruction and image capturing system

성, 저장 공간과 초점 변수(focusing parameter) 결 정 과정에서 발생할 수 있는 오차와 밀접한 관계 를 갖는다. 또한, 영상이 갖는 심도는 입자의 크 기와 관계가 있음으로 해석 입자의 크기와도 관 계가 있다.

Figure 2는 재생 영상을 획득하는 과정과 좌표 축을 나타낸 그림이다. CCD Camera (Kodak MegaPlus ES1.0)는 1008×1018 개의 픽셀, 각 픽 셀은 9×9 /៣의 크기를 가지고 있다. 이 후, 편의 상 1001×1001 영상으로 잘라내어 다시 조합함으 로써 한 평면에서의 영상이 형성된다. DC motor 를 이용한 이송장치(PI Inc.)의 최소 이송거리는 33 nm이다.

3. 재생 영상과 해석

3.1 재생 영상과 심도

Figure 3은 분무의 국부 영역을 촬영한 것으로 CCD 센서 직접 노출에 의해 양 방향에서 획득된 영상이다. 홀로그램에 의해 재생되는 영상은 광 축 방향 심도가 깊기 때문에, Fig. 4 (a)와 같이 물체의 단면적에 비해 광축 방향으로 길이가 늘 어나 있는 영상을 재생하게 된다. Fig. 4 (b)는 입 자가 초점면에서 벗어나면서 나타나는 비초점 패 턴으로, ③은 초점면의 입자 영상이며, ①과 ⑤로 가면서 입자의 가장자리가 흐려지는 것을 알 수 있다. 영상간 거리는 495 µm이며, 입자의 직경은 567 µm이지만, 이보다 훨씬 긴 심도를 가지고 있 음을 알 수 있다.

3.2 입자 영상 해석

영상의 전처리 작업을 통해서 개별 입자들의 2 차원 좌표가 얻어진 후, 광축 방향 좌표를 구하 기 위하여 입자의 광축 방향 초점면을 결정하여 야 한다. 기존 연구에서는 경계에서의 명암의 명 확성을 많이 이용하였지만, 본 연구와 같이 스펙 클 잡음으로 인하여 초점면에서도 불분명한 입자 경계를 갖는 경우는, 심한 오차를 내포하거나 적 용하는데 어려움이 따른다. 따라서, 본 연구에서 는 인접 영역의 이미지들 사이의 상관 계수 (CoCf, Correlation Coefficient)를 초점면 판단 변수 로써 이용하였다. 두 영상간의 상관 계수는 다음 과 같이 정의되며

Fig. 3 Reconstructed droplet image

Fig. 4 Depth of focus of droplet image

$$CoCf = \frac{\sum_{m} \sum_{n} (A_{mn} - \overline{A})(B_{mn} - \overline{B})}{\sqrt{(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2})(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2})}}$$

여기서, m과 n은 이미지의 가로, 세로 크기, A 와 B는 양 이미지, A와 B는 양 이미지 명암 값의 평균이다. 양 이미지간의 상관 계수는, 양 이미지의 유사성 정도를 나타내며, 유사성이 높

Fig. 5 CoCf of speckle image

Fig. 6 Gaussian fitting of CoCf

Fig. 7 CoCf with droplet size

을수록 최대 1까지의 값을 갖는다. 광축상의 한 평면에서 입자의 상관계수는, 이 면을 기준으로 앞·뒤로 일정 거리만큼 떨어져 있는 두 영상으 로부터 계산된다. 두 이미지간 거리(Δz)는, 입자 가 없이 배경(스페클)만 존재하는 이미지를 33 mm 씩 증분하며 상관계수가 0.1 이하로 떨어지는 거 리가 대략적으로 200 µm(Fig. 5) 이상이 되어야 하므로, 이송 장치의 해상도와 연관하여 198 µm 로 하였다. Fig. 6은 대표적인 한 입자에 대해서, 광축 방향을 따라 구해진 상관 계수를 나타낸 것 이다. 구해진 상관 계수를, Gaussian 곡선으로 근 사시키면, 보다 더 정확히 초점면을 결정할 수 있다.

상관 계수 결정에 있어서, 입자와 배경 이미지 의 상대적 크기가 상관 계수에 많은 영향을 미친 다. 즉, 입자의 면적에 비해서 배경의 면적이 커 질수록 상관 계수는 작아진다. 따라서, 입자와 배 경의 상대적 크기 영향을 검토한 결과, 본 연구 에서는 입자의 크기와 배경의 면적이 1:1이 되도 록 이미지 크기를 결정하고, 상관 계수를 계산하 였다. 또한, 초점면에서 나타나는 상관 계수의 최 대값은, 입자의 크기에 따라서 크게 달라진다. Fig. 7에 나타나 있듯이, 큰 입자의 경우, 작은 입 자에 비해서 낮은 명암값을 가지며, 스페클 잡음 에 의한 영상의 훼손이 적으므로 상대적으로 높 은 상관 계수 최대값을 갖는다. 반면에, 작은 입 자의 경우, 상관 관계 최대값이 낮으며 심도도

Fig. 8 Calibration plate for sizing; (a) photographic image (b) holographic image

짧기 때문에 Gaussian 곡선 근사도 다르게 적용하 였다. 즉, 상관 계수의 최고값(*CoCf_{peak}*)과 입자 크기와의 연관 관계를 파악하여, 회귀 분석을 통 하여 95% 신뢰수준으로 오차 구간을 설정하고, 이 구간을 벗어나는 입자는 잘못 인식된 입자로 판별하는 기준을 설정, 적용하였다.

또한, 입자 크기 결정 과정을 검증하기 위하여 투명 유리에 8 ~ 300 µm의 원이 존재하는 크기 보정판을 사용하였다. Fig. 8 (a)는 보정판의 사진 이미지, (b)는 홀로그램 이미지이며, 43 µm 이하의 작은 원은 제대로 재생되지 않으므로, 기록할 수 있는 가장 작은 입자의 크기는 대략 50 µm 정도 가 된다. 스페클 잡음은 Wavelet 기법을 이용하여 제거하였으며, Fig. 9는 입자 크기 결정 절차를 나타내고 있다. Fig. 9 (a)는 300 µm 입자의 이미 지, (b)는 Wavelet을 적용하여 잡음을 제거한 이 미지, (c)는 5×5 smooth operator를 적용시킨 이미 지, (d)는 이진화 기준값을 적용시키기 위하여 명 암값을 0부터 255까지 확장시킨 이미지, (e)는 기 준값에 의하여 이진화된 입자 이미지이다. 이진 화의 기준값은 보정판의 입자 크기를 가장 잘 예 측한 0.647로 결정하였다.

4 결 과

4.1 동시 양 방향 홀로그래피

Figure 10은 동시 기록 양 방향 홀로그래피로 얻어진 입자 위치를 도시한 결과이다. 앞에서 언 급한 오차 요인들로 인하여 약간씩 일치하지 않 고 있으며, 좌표 수정 전 양 방향 입자 좌표 차 이의 평균은 286 /m, 좌표 수정 후 평균은 129 /m로 감소하였다. 좌표 수정 후에도 완벽하게 일 치하지 않는 이유는, 영상 해석 과정의 불규칙한 패턴에 의한 오차는 좌표 수정 작업에서 포함시 킬 수 없었기 때문이다.

4.2 시간 간격 양 방향 홀로그래피

동시 양 방향 홀로그래피에서 결정된 좌표 변 환 행렬을 적용하여, 시간 간격 양 방향 홀로그 래피에서 기록된 입자들의 위치와 3차원 속도 결 과를 Fig. 11에 나타내었다. 분사 압력은 147 kPa, 196 kPa, 294 kPa이며, 분사 압력이 높아지면서 입자 크기는 작아지고, 입자 속도는 증가하는 예 측 결과를 나타내고 있다.

Fig. 10 Simultaneous recording of two side holography

4.3 레이저 계측 장비와의 결과 비교

개발된 홀로그래피를 이용한 입자의 크기 및 3차 원 속도 측정 시스템의 타당성을 검증하기 위하 여, 2D-PDPA(Phase Doppler Particle Analyzer)를 이용한 계측 결과와 비교하였다. 본 연구에서 사용한 PDPA는, 점 측정 및 2차원 속도 측정의 한계성과, 많은 양의 샘플을 통한 통계적인 결과 를 바탕으로 하는 특성을 가지고 있기 때문에, 이미지 처리에 기반한 홀로그래피 계측 결과와 직접적인 비교는 불가능하지만, 실험 조건 따른 경향의 변화는 확인 가능하다. Fig. 12는 비교 결 과를 나타내고 있으며, 분사 압력이 증가하면서 입자 속도는 증가하고, 크기는 감소하는 같은 경 향을 확인할 수 있다. 속도는 아주 작은 차이를 나타내지만, 입자 크기는 다소 많은 차이를 보이 고 있는데, 이는 홀로그래피의 특성상 제한된 샘 플 수 때문으로 추정된다.

5. 결 론

본 연구에서는 양 방향 홀로그래피 시스템을 사용하여 기록된 분무 홀로그램을 입자 이미지 처리 방식을 적용하여 자동 처리함으로써, 입자 의 크기 및 3차원 속도 성분을 측정할 수 있는 시스템을 개발하였다. 홀로그래피 기록 시스템은 동시, 또는 시간 간격을 두고 양 방향에서 기록 할 수 있도록 하여 양 방향 기록에 의한 오차를 보정하였다. 완성된 프로그램은, 광축 방향 입자 의 정확한 위치를 결정하는 초점면 결정 변수로 써 상관계수의 도입, 동시 기록 양 방향 홀로그 램 해석을 통한 양 방향 좌표 매칭, 시간 간격

(a) injection pressure = 147 kPa

(b) injection pressure = 196 kPa

(c) injection pressure = 294 kPa **Fig. 11** 3D velocities of droplets

양 방향 분무 홀로그램의 이미지 처리를 통한 입 자 크기 및 입자 추적 알고리즘을 적용한 3차원 속도 성분 추출 등이 포함되어 있다. 완성된 프 로그램을 사용하여 분무 홀로그램을 자동 처리하

Fig. 12 Comparison of results

여 액적들의 크기와 3차원 속도 성분을 구했으 며, 레이저 계측 장비로 측정된 속도 성분과 어 느 정도 잘 일치하여, 개발된 3차원 입자 속도 측정을 위한 펄스 홀로그래피 시스템의 타당성을 확인하였다.

후 기

본 연구는 한국과학재단 목적기초연구사업 (R05-2000-000-00297-0) 지원으로 수행되었습니다.

참 고 문 헌

- (1) Vikram, C., S., 1992, *Particle Field Holography*, Cambridge Univ. Press, Cambridge.
- (2) Hariharan, P., 1996, *Optical Holography: principles, techniques, and applications*, Cambridge Univ. Press Cambridge.
- (3) Barnhart, D.H., Adrian, R.J., and Papen, G.C., 1994, "Phase-Conjugate Holographic System for High-Resolution Particle-Image Velocimetry," *Applied Optics*, Vol 33, pp. 7159~7170.
- (4) Feldmann, O., Mayinger, E. h .F, and Gebhard,
 P., 1998. "Short-time Holography and Holographic
 PIV Applied to Engineering Problems," *Applied Optical Measurements*.
- (5) Haussmann, G., and Lauterborn, W., 1980, "Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3-D Image Processing of Hologram Reconstructions," *Applied Optics*, Vol. 19, No. 20, pp.3529~3535.