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Abstract 

This paper presents the adjoint variable design sensitivity analysis for thermal systems considering both 
conduction and convection heat transfer. Both nodal temperature and total heat flow are considered to be 
objective functions and design sensitivity formulas are derived for each case. For the case of convection heat 
transfer, the adjoint analysis is carefully proceeded to obtain a precise result. A topology optimization example 
is examined for a simple planar square plate in order to design a heat exchanger as verification. 

1. INTRODUCTION  
From the 1950s, numbers of researches have been 

done in optimization of thermal systems either 
analytically [1] or numerically. And much attention was 
paid for shape optimization from the 1980s [2-4]. 
Design sensitivity equations were well established for 
the linear and the nonlinear systems considering the 
conduction but not much for convection.  
Topology optimization in thermal systems, however, is 
a relatively recent technique and is being done by some 
researchers. A topology optimization was presented for 
a heat conduction problem of minimum resistance 
between input and output points [5]. Furthermore, many 
researches have been done for coupled problems [6,7].  
This paper presents the adjoint variable design 
sensitivity analysis (DSA) for thermal systems 
considering conduction and convection heat transfer. 
For the convenience, finite element equations are 
provided in Chap.2. In Chap.3, DSA formulas and their 
derivation processes are given. Both nodal temperature 

and total heat flow are considered to be objective. For 
the case of convection heat transfer, a special treatment 
is applied to the adjoint analysis to obtain a precise 
result. Equations for numerical implementation for 
topology optimization are given in Chap.4. Finally, as 
an example, a square plate is optimized in order to 
design a heat exchanger for verification purpose. 
 

2. GOVERNING EQUATIONS 
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 Figure 1. A thermal system with boundary conditions 
 
Consider a general heat transfer system including 

convection shown in Fig.1 then the governing equation 
can be written as  
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and boundary conditions are 
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where the coefficient k denotes the thermal 

conductivity(W/m·K), T temperature(K), bq internal 
heat generation rate per unit volume(W/m3), fq the 
external heat flux(W/m2), hq the convective heat 
flux(W/m2), hf the convection heat transfer 
coefficient(W/m2·K), and  Tb  temperature of coolant.   

In order to take advantages of the Finite Element 
Method (FEM), variational procedures are applied to 
Eq.1 and 2. As a result, an algebraic equation is obtained 
for each finite element from the differential equation, 
that is, 
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In this equation, ( )e

cK  is a thermal conductivity 
matrix, ( )e

hK  a matrix representing the convection, N a 
shape function, ( )eQ  a load (heat flow) vector. Note 
that the convection coefficient appears on both the 
system matrix (K ) and the load vector (Q ), which 
makes special adjoint loads in the design sensitivity 
analysis. And the convection matrix ( )e

hK  is generally 
simplified as a diagonal matrix [8], that is, 

 
( )
3
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e

e
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Γ
= Γ∫  (4) 

 
where (i,i) and (i) represent the corresponding matrix and 
vector components respectively. Assembling every finite 
element, the global matrix equation is obtained as 
 

KT Q=  (5) 

 

3. DESIGN SENSITIVITY ANALYSIS 
 
Topology optimization is considered to be a heavy 

computational problem since it deals with thousands of 
design variables. An adjoint variable method (AVM) [9] 
is probably the unique alternative to calculate sensitivity 
information in such a big size problem. 

Consider a performance index form the thermal 
system as 

 
( , ( ))b T bψ ψ=  (6) 

 
where b is a vector of design variables, then the 

corresponding adjoint equation to Eq.6 can be written as 
 

T

K
T
ψλ ∂ =  ∂   (7) 

 
Finally, the gradient information is obtained by 
 

 ( )Td Q KTdb b b b
ψ ψ λ∂ ∂ ∂ = + − ∂ ∂ ∂ 

%  (8) 

 
where the tilde (~) indicates a variable that is to be held 
constant for of partial differentiation. 

 
3.1 Nodal Temperature as a Performance Index 
 
When the temperature of the k-th nodal point is 

chosen as the performance index, that is, 
 

1
Tu Tψ =  (9) 

 
where the u is the vector which has 1 in k-th position and 
0 in elsewhere. Then the adjoint load will be 

 

( )1 Tu T u
T T
ψ∂ ∂= =
∂ ∂

 (10) 

 
Before applying this load, the convection effect 

should be carefully considered because that the 
convection terms exist on both sides of the original 
equation (Eq.5). Applying the original convection load 
will add additional load or neglecting the convection heat 
will omit the system matrix hK . Thus, the convection 
coefficient is kept but the temperature of coolant bT  is 
set to 0 while performing the adjoint analysis.  
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3.2 Input Heat Flow Rate as a Performance Index 
 
Another common performance index in thermal 

systems is the heat flow rate in many heat exchangers 
such as cooling fins [1]. Suppose a planar surface shown 
in Fig.2 in which and arbitrary heat flows to one end and 
the other ends are insulated and convection heat transfer 
occurs at the top surface.  

 

sT
,f bh T

 Figure 2. A planar heat transfer system with 
convection occurs at the top surface  

 
If the design goal is to obtain a maximum convection 

heat flow rate, owing to the energy conservation law, an 
equivalent problem is to find the maximum heat in-flow 
rate at the left edge. If we rewrite Eq.5 in a partitioned 
form as 

 
11 12 1

21 22
s

QK K T
K K RT

     =          
 (11) 

 
where unknown variables enclosed by   are 
determined by ordinary matrix operations. The total heat 
in-flow rate to the system is then defined as 
 

2
Tv Rψ =  (12) 

 
where the vector v  is a summation operator, that is, 

[1,1, ,1]Tv = L . Taking differentiation on Eq.11 with 
respect to the single design variable and rearranging 
terms yields, 
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Thus the design sensitivity equation is 
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And the other equation of differentiation is  
 

11 1 11 1 12( )sK T K T K T Q′ ′ ′ ′= − + +  (15) 
 

Taking pre-multiplication an arbitrary matrix Tλ (with 
suitable matrix size) holds the equation, i.e., 
 

11 1 11 1 12( )T T s TK T K T K T Qλ λ λ′ ′ ′ ′= − + + (16) 
 
By letting 11 21

T TK v Kλ =  and solving the equation  
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Finally, following equation is obtained to calculate 
design sensitivity. 
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4. TOPOLOGY OPTIMIZATION  
 

For topology optimization of the thermal system, 
artificial variables iρ , actually design variables, are 
introduced to interpolate material properties such as, 
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where 0k represents the original conductivity and 

, ,
,f t f lh h  convection heat transfer coefficients for the 

top surface and side edges for each finite element, 
respectively and the subscripts 0 indicate their original 
values. For the conduction, it is quite clear that when iρ   
near 1 indicates material being exist and near 0 void. But 
considering the convection, if there exists material then 
convection heat transfer occurs at the top surface but not 
at the element edges. On the contrary, when a element is 
considered to be void then heat transfer occurs only at 
the side edges. Figure 3 illustrates the cases to be 
considered for explaining the convection. In the area A, 
where material exist all of the its adjacent neighbors, 
convection occurs only at the top surface, which can be 
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mathematically interpreted through Eq. 19 by letting 
1iρ = . For the area C, void everywhere, a question may 

arise that the convection does not affect for empty space. 
But considering a network model, shown in Fig. 4, if a 
conduction resister is open, 0iρ = , then there will be 
no heat flow to the isolated system. Thus the convection 
resisters in the isolated system cannot affect the heat 
flow but elements in transition area, area B, receives high 
attentions according to Eq.19.  
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 Figure 3. An illustrative model for explaining 
material interpolation for the convection 
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Figure 4. A network model for explaining material 

interpolation for the convection 
 
 

Since each design variable is assigned to a individual 
finite element, the design sensitivity can be written as 
 

( ) ( )
( ) ( )

e e
e T e

i i i i

d Q K Td
ψ ψ λρ ρ ρ ρ

 ∂ ∂ ∂= + − ∂ ∂ ∂ 
(20) 

 
And from Eq.4 and 5, the load vector is the form of 
 

( ) ( ) ( [1,1,1,1])e e T
b hQ T K w w= =Q  (21) 

 
After taking differentiation, finally, the design sensitivity 
for each design is 
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5. NUMERICAL EXAMPLES 
 
 

A 2 dimensional cooling fin is examined as a 
verificational purpose. A 20 x 50 mm2 plate (Fig.2) is 
considered to have heat conditions such that 

0.2, 0.005, 25 , 300S
f bk h T C T C= = = ° = ° . Knowing that a 

larger temperature differences ensures higher convection 
heat transfer rate, an optimization problem is drawn to 
have high temperature at the middle of the right side end 
and 50% volume constraint is imposed, that is,  

 
. . 0.5
Maximize nodal temperature at the middle of the right end
s t volume fraction<

 
The optimal pattern is obtained after 34 iterations as 
shown in Fig.5(a) and the reanalysis model, Fig.5(b), is 
constructed for based on that pattern. Then the optimal 
design is compared to basic shapes[10] as shown in 
Table 1. From the table, the optimal model follows the 
analytical solution, the parabola shape, in terms of heat 
transfer rate per used volume.  
 

 (a) optimal topology 

 (a) reanalysis model 
 

Figure 5. Topology optimization result for 2D fin 
design 
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Table 1. Comparison for effectiveness of fins 

0.113

0.098

0.053

0.139

Q/Vol

43248.93Optimum

Most attractive in terms 
of manufacturing *50049.17Triangle

100052.10Rectangular

Largest heat dissipation 
per unit volume *33346.43Parabola

RemarkVolumeTotal QType

0.113

0.098

0.053

0.139

Q/Vol

43248.93Optimum

Most attractive in terms 
of manufacturing *50049.17Triangle

100052.10Rectangular

Largest heat dissipation 
per unit volume *33346.43Parabola

RemarkVolumeTotal QType

  
 
 

6. CONCLUSIONS 
 
Design sensitivity analysis is presented using the 

adjoint variable method for the heat transfer system 
having a convective circumstance.  Since convection 
phenomena affect both on the system matrix K and the 
load vector F an adjoint system proposed with care.  
The input heat flow rate, an equivalent analogy to 
reaction force in structural systems, is examined as a 
performance index. Material interpolation function is 
provided to consider the conduction, convection at the 
top surface, and the side edges with a illustrative network 
model. As a verificational purpose, 2D fin is designed 
using the topology optimization method and it is shown 
that the optimal model matches fairly well with the 
analytical solution. 
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