Refining of TiO(OH)₂ slurry and carbon control of ultrafine TiC-Co powder

Material Technology Dept, Korea Institution of Machinery & Materials *Dae-Sik Im, Seong-Hyeon Hong, Byoung-Kee Kim

1. Introduction

TiC based-alloy has been widely used as cutting tools and dies due to a high hardness and wear resistance. In order to increase the wear resistance of TiC based-alloy, ultrafine TiC powder must be developed. In industry, TiC has primarily been produced by the carbothermal reaction of TiO_2 with carbon at about 1700° C and the produced TiC size is about 172° m.

In this study, spray conversion process was applied to synthesize ultrafine TiC powders. The effect of washing treatment of TiO(OH)₂ slurry on sulfur elimination were studied. The control of carbon content of TiC powders was also investigated in manufacturing processes including H₂ and vacuum atmospheres.

2. Experimental

The material $TiO(OH)_2$ slurry produced by sulfate process was used as a raw material. The $TiO(OH)_2$ slurry was washed 3 times by water, and then added water and NH_4OH as PH controlling agent in water. The NH_4OH was added until PH value in water reached in the range of $7\sim9$. After adding NH_4OH , the slurry was washed by distilled water and dried.

The precursor solution of $TiO(OH)_2$ and Co nitrate was spray-dried and calcined at $700^{\circ}C$ for 3 hours. The calcined Ti-Co oxide and carbon ($100\%\sim140\%$) were ball-milled for 24 hours. Reduction/carburization treatments of the milled composite oxide powder with different carbon were conducted at $1200\sim1250^{\circ}C$ for $3\sim6$ hours in H_2 and vacuum atmospheres.

The morphology and microstructure of the powders were examined by FE-SEM. The chemical analyses of TiC-Co powders were also performed with LECO TC-436 for oxygen and with LECO TC-600 for carbon.

3. Results and discussion

a) Refining of TiO(OH)2 slurry

Raw material $TiO(OH)_2$ slurry contains impurity sulfur as mush as 4.40 wt%. In order to decrease S content, slurry was washed by water, and then new water and $NH_4(OH)$ were added in $TiO(OH)_2$ slurry. After separation and washing of $TiO(OH)_2$ powder, sulfur content in $TiO(OH)_2$ was drastically decreased. The effect of $NH_4(OH)$ addition was explained as follows;

 $TiO(OH)_2 \cdot SO_3 + H_2SO_4 + nNH_4OH \rightarrow TiO(OH)_2 + (NH_4)_2SO_4 + H_2O$

b) Carbon control of TiC-5%Co powder during synthesis in H₂ atmosphere

Fig. 1 shows the carbon contents in TiC-5%Co powders heat-treated at 1250% for 6 hors in H_2 atmosphere. By increasing added carbon amount in calcined Ti-Co based composite oxides, the carbon content in TiC-5%Co powder increased. After adding 120% of carbon, the carbon and oxygen contents are 18.8% and 1.41%, respectively. This carbon content in powder is very similar to the theoretical carbon content(19.04%) of TiC-5%Co composition. The formation temperature of TiC particle is very low when compared to that of conventional process due to a high reactivity of fine particle in Ti-Co oxides. Fig. 2 show the FE-SEM micrograph of TiC-5%Co powder formed by addition of 134% carbon. The particle sizes in TiC-5%Co powder were found to be below 200 nm. The small particles existed on the surface of large powder formed at 1250% for 6 hours.

c) Carbon control of TiC-5%Co powder during synthesis in vacuum.

The reduction/carburization process in vacuum has some advantage such as batch-type. After heat-treatment at $1200\,^{\circ}\mathrm{C}$ for 3 hours in vacuum, TiC phase was formed and oxygen content in TiC-5%Co powders is below 0.52%. Fig. 3 shows the variations of carbon content in TiC-5%Co powders with added carbon content and heat-treatment time. 100% of carbon

addition is sufficient to control carbon in TiC-5%Co powder due to small carbon loss during vacuum heat-treatment.

Fig. 4 shows the FE-SEM micrographs of TiC-5%Co powders formed at 1200℃ for 3 hours in vacuum. The TiC particle size decreased as the added carbon content increased because the TiC particle growth inhibited by excess carbon particles.

3. Conclusion

The sulfur content in $TiO(OH)_2$ slurry decreased by the treatment of NH_4OH addition and washing. Ultrafine TiC-5%Co powders were successfully synthesized at $1200 \sim 1250\,^{\circ}C$ for 3 hours in H_2 and vacuum atmosphere. The optimum added carbon contents necessary for formation of TiC-5%Co powder in H_2 and vacuum processes were 120% and 100%, respectively.

Acknowledgements

This research was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Science & Technology, Republic of Korea.

Fig. 1 The carbon contents in TiC-5%Co powders heat-treated at 1250°C for 6 hors in H_2 atmosphere.

Fig. 2 The FE-SEM micrograph of TiC-5%Co powder formed by addition of 134% carbon.

1200℃, 3h(120%C)

Fig. 3 Variations of carbon content in TiC-5%Co powders with heat-treatment time and added carbon.

Fig 4. The FE-SEM micrographs of TiC-5%Co powders.