A security method for Gatekeeper based on Digital
Authentication by H.235

SeonCheol Hwang ", SeungSoo Han ™", JunYoung Lee " ,and JunRim Choi

TS

* Dept of Internet & TV Broadcast, Induk Institute of Technology, Seoul, 139-749, Korea
Tel : +82-2-901-7706 Fax :+82-2-901-6884 E-mail: sthwang@induk.ac.kr
**Dept of Information Engineering, MyongJi University, Yongln, 449-728, Korea
Tel : +82-31-330-6761 Fax : +82-31-330-6470 E-mail: shan@mju.ac.kr
***Dept of Information Media Engineering, MyonglJi College, Seoul, 120-776, Korea
Tel : +82-2-300-1165 Fax : +82-2-304-4832 E-mail: jylee@mail.mjc.ac.kr
****Dept of Electrical Eng. & Computer Sci., KyungPook University, DaeGu, 702-701, Korea
Tel : +82-53-950-5506 Fax : +82-53-950-5505 E-mail: jrchoi@ee.knu.co.kr

Abstract:

While the needs for VoIPs(Voice over IP) encourage the commercial trials for VoIP services, there are

many problems such as user authentication, blocking of illegal user and eavesdropping. In this paper, a management
algorithm of registration of VoIP terminals is explained and security methods for tolling and data encryption module
is designed and built up. The module structure will have the advantages of the entire development of securcd
gatekeeper without whole modification of gatekeeper. In order to secure the ordinary gatekeeper based on H.323
standard, user authentication and data encryption technologies are developed based on the H.235 standard and
simply located over the plain H.323 stacks. The data structures for secured communications are implemented

according to ASN.1 structures by H.235.

Key words: VoIP, Gatekeeper, H.323, Authentication, Eavesdropping, Security, H.235

1. INTRODUCTION

VoIP(Voice over IP) based on H.323 standard consists
of four entities: a VoIP terminal, a gatekeeper, a
gateway and an MCU(Multipoint Control Unit).
Among them, the most important component is the
gatekeeper that manages the registration of terminals,
controls their bandwidths, converts IP addresses to
phone numbers of PSTN(Public Switch Telephone
Network)[1], does call setups and exchanges the
abilities of H.245(a part of H.323). As shown above,
the gatekeeper provides call control services as a kind
of telephone office.

Recent developments in the data communication causes
the increase of commercialized VoIP use, then companies
launch service providing systems for VoIP{2]. Their
focuses are the provisions of high quality Internet
telephony and safe management systems in order to
gather and keep more customers. In this sense, the
authentication of proper customers should be necessary.
Authentication in VoIP, before ITU-T announced H.235,
was accomplished by companies individually. So, they
could not exchange their information of customers or
cross check the authentication each other. And the
problems of embezzlements and eavesdropping of calls
are raised too.

To solve these problems, ITU-T recommended a
security protocol for Internet telephony. This
recommendation is called by H.235 to provide security
services such as authentication and privacy for
H.323[3]. H.235 has the advantages to protect the
H.323 by adding simple module on it. This kind of
module structure gives advantages for developers to

save efforts and time to implement security system
without extra development of full systems.

We have designed protected procedures for registration
of multiple VoIP terminals and security methods for
call establishments and call controls based on H.235.
The designed security system was developed in
module style that works properly without entire
changes of target system. This paper is organized as
follows. The algorithms for encryption, integrity, key
distribution and authenti- cation are described. Tae
design and development of procedures for registration
into gatekeeper and call establishment in securad
methods are discussed. Finally, the results of secured
communications are presented in ASN.1 format that
was hooked during communication.

2. AUTHENTICATION METHODS

2.1. Key distribution methods

In cryptography, the key is very important to encrypt
and decrypt communication data. Two kinds of k2y
distribution methods are used in our secur:d
gatekeeper system: a symmetric key method and a
public key method. In the symmetric key method, t1e
same key shared between two entities is used to
encrypt and decrypt data. To perform the symmetric
key distribution, Diffie-Hellman (DH) algorithm was
used. This method provides signaling to generate a
shared secret between two entities. At the end of LH
exchange both the entities will possess a shared secet
key. This shared key will be used to protect all data
during communication.

739

The public key method is a kind of asymmetric key
methods. This scheme uses two different keys that are
a private key and a public key. In our public key
method, it is assumed that an identifier and associated
certificate are assigned and exchanged during
subscribing processes. And the public key encryption
algorithm in our system used the RSA algorithm.

2.2. Hash algorithm

A hash algorithm is used to check data integrity in
our system. The hash algorithm calculates a message
digest, called ‘hash’, that is a fixed-length, pseudo-
random output produced by any length of input
message. The message is sent with hash value. If a
message is sent safely and is not changed during
communication, the attached hash value is equal to
the new calculated hash value of message. The hash
value also is used to check non-repudiation of the
message. The most common message digest
produced with the distributed key is MAC(Message
Authentication Code) and it is a very powerful
method for message authentication. Especially the
hash-based MAC is called HMAC. Two kinds of
HMAC algorithm were implemented in our system:
HMAC-MD5 and HMAC-SHAL.

(1) HMAC-MDS5 algorithm

HMAC-MDS5 algorithm is a kind of hash algorithm
that calculates a message digest from a message with a
key. The message digest is 128bit long data. The key
used in this algorithm is not only a "cryptographic
key" as used in a traditional sense but a shared secret.
The size of the key is equal to or greater than L/2,
where L(128bit) is the size of the hash function output.
Any length of message is used in this algorithm where
the message shall be divided into 512bit long data. If
the data is less than 512bit, it is padded with 0.
HMAC-MDS5 that uses key longer than 512bit shall
hash the key and then use the resultant 128bit string as
the HMAC key.

(2) HMAC-SHALI1 algorithm

HMAC-SHALI is similar to HMAC-MDS5 in processes.
But HMAC-SHA1 uses 180bit long key and produces
same length of message digest. So, SHA1 has survived
cryptanalysis and comes highly recommended by the
crypto community. Our system, however, truncated the
180bit hash value to 96bit according to the H.235
recommendation. This is called HMAC-SHA1-96.

2.3. Authentication Processes

The process of authentication verifies that the
respondents are who they say they are. The
authentication of our system is based either on a
shared secret(by DH key exchange) or on public key
based methods with certification. So, there are two
types of authentication processes: Diffie-Hellman with
optional authentication and Subscription-based
authentication. Since DH method is used in point-to-
point communication, it is not suitable for gatekeeper
environment. Therefore our secured gatekeeper
implemented the subscription-based authentication.

760

This method has three different variations that may be
implemented depending on requirements:

(1) password-based with symmetric encryption
(2) password-based with hashing
(3) certificate-based with signatures

Authentication between Gatekeeper and endpoint
generally is implemented with subscription-based
methods. All RAS messages other than
GRQ(Gatekeeper request) /GCF(Gatekeeper confirm)
should contain the authenti- cation tokens. The token
will contain the information as described in the
following methods.

(1) Password-based with symmetric encryption
The encryption key is length N octets, and is formed as
follows:
- If password length = N, Key = password
- If password length < N, the key is padded with
zero
- If password length > N, the first N octets are
assigned to the key, then the N+Mth octet of the
password is XOR'd to the Mmod(N)th octet(for
all octets beyond N).

Fig.1 illustrates the process of this method. GRQ
means a request message to find a gatekeeper and GCF
means a confirm message by the gatekeeper. In this
stage, the messages are not authenticated. And then the
endpoint sends and receives the request message xxQ
and confirm message including ‘cryptoTokens’
containing ‘crypto- EncryptedToken’. The
‘cryptoEncryptedToken’ contains an encrypted token
of timestamp, random, senderID and peeriD.

Ro (..., Aliag,) [Not Authenticated]
(... Gatekeeperldentificr, ...} [Not Authenti
GCF
Q. ClearTokens, cryptoTokens {...(cryptoEncryptedToken)...|
IRR
ClearTokens, cryptoTokens |...(¢crvptoEncryptedToken). .. «CF

Fig.1 The procedure of password-based with
symmetric encryption

(2) Password-based with hashing

This method is a kind of subscription-based method.
When an endpoint registers with a gatekeeper, the
password and identifier should be exchanged. The
shared secret is computed by HMAC-SHA1-96 with
exchanged password. This registration process is prior
to the setup process between endpoints and gatekeeper.
After registration, all messages will be protected by
authentication and integrity. The procedures of this
method are shown in Fig.2. The sender computes the
hash value with the shared secret and adds it into the
sending message. The recipient receives the message
and then extracts the received hash value and keeps it.
After that, the recipient computes the new hash value
with the received message and compares the extracted
hash value with the computed hash value. The
message is considered uncorrupted only if both hash
values are equal. If not, the authentication failed and
the registration will be rejected.

crQ (..., Aliag, ...} [Not Authenticated]
(..., Gatekeeperldentifier,) [Not Authenti GoF
*xQ crvptoTokens |...(cryptoHashedToken)...]

IRR
cryptoTokens |...(cryptoHashedToken)...]

Fig.2 The procedure of password-based hashing

(3) Certificate-based with signatures

The signature security method mandates the GK-
routed model and is based upon the H.245 tunneling
techniques. This method does not depend on the
administration of mutual shared secrets of the entities.
All entities compute the digital signatures using keys
extracted from certificates and send their messages
with these digital signatures. There are two modes of
signature security method: authentication/integrity
mode and authentication-only mode. In the
authentication/integrity mode, every hop re-computes
security information and compares it hop-by-hop. Both
authentication and integrity check are performed in
this mode. In the authentication-only mode, the
security information made by first hop is not changed
in transit. So, this mode is called as End-to-End mode.
Certificate-based with signature is shown in Fig.3.

.

crQ (oo Aliag.) [Not Authenticated]
(..., Gatekeeperldentifier, ...) [Not Authenticated] GOF
xxQ CryptoTokens]...(cryptoSignedToken)...|

IRR

CryptoTokens|...(cryptoSignedToken)...} «CF

Fig.3 Certificate-based with signatures

3. SYSTEM DESIGN

3.1. Scope of security for H.323

Call signaling and control channel are secured by
authentication and integrity of messages. The Media
channel is not secured but the media itself is encrypted
using DES(Data Encryption Standard) with symmetric
key. So the media data packets consist of non-encrypted
header and encrypted SDU(Service Data Unit).

AV application " Terminal control and management

RTCP

R

.. Transport Securit
L v v
uoP ' TCP . nommal

§ Spcured

Fig.4 Overview of the scope of security area for
H.323

1P (IPSEC Is available)

3.2. Development of security stack based on H.235

We developed a security stack based on H.235. This
stack performs the security functions at the top layer

over the H.323 VoIP stack. Our security system has an
advantage that is developed in module style and then
works properly without entire changes of tarzet
system. The security module consists of two classzs:
‘TokenHandler’ class and ‘TokenTreater’ class.
According to security mode, VoIP stack decides to use
the TokenHandler class or not when it constructs the
PDU(Protocol Data Unit). If TokenHandler class is
used, it evokes the TokenTreater class that compues
an encrypted PDU following the security profilzs,
Procedure I/II/III. Procedure I is the password-based
with hashing mode, procedure II is the certificate-
based with signatures named a hop-by-hop mode and
procedure III is also the certificate-based with
signatures, an end-to-end mode. Fig.5 illustrates the
security stack developed in this paper.

If user selects non-security mode, the PDU of H.323
will be passed by the security stack. But if user sele:ts
security mode, all PDUs will be sent to the security
stack. Fig.6 illustrates more detail processes of the
security stack. .

H.235 Stack

P 51 A

1| TokenTreater .

TokenHandler

<—v-'| Ver1ifyToken () l‘ +
: il
:» MakeToken (t |.4~IT->|7Transmitler

Secured —»
Normal ~---p

H.323 Stack

Listener

Fig.5 Overview of the developed security stack based
on H.235

VenfyToken{}

Secunty
mode.

P2/3

VenfySignegToken{)

Butld ‘PO

MakeToken(}
Security
mode

£1
MakeHashedToken(,]

2213

Transmitier

VerifyHopSignedToken()

VenfyEndSignedToken()
VerifyHashedToken()

MakeSignedToken{)

Fig.6 Detail processes of the security stack

When a PDU arrives at ‘Listener’ class of ‘he
recipient, it is verified by ‘VerifyToken’ class whetier
security mode or not. If it is security mode, it is
classified as password-based with hashing (Proced ire
1), hop-by-hop signature mode (Procedure II) and e1d-
to-end signature mode (Procedure 1II) according to its
security mode. Procedure I evo<es
‘VerifyHashedToken()’, procedure 11 evoes
“VerifyHopSignedToken()’ and procedure III does
“VerifyEndSignedToken()’ respectively. During this
processes, authentication and message integrity is
checked properly. After this processes, the PDU is sent
to the H.323 stack. Consider the case where a sender

761

wishes to transmit a PDU. According to the security
mode, the sender transmits the PDU without adding
any security component or sends it into ‘MakeToken()’
for making security components. If the security mode
is procedure I, the PDU is passed to
‘MakeHashedToken()’. And if the security mode is
procedure II or III, the PDU 1is handed to
‘MakeSignedToken()’.)

4. RESULTS AND DISCUSSION

4.1. GUI(Graphic User Interface) result

Our system consists of a Gatekeeper and a user terminal
for VoIP that is designed in GUI. The user terminal can
call directly by pushing numbers and select a GK-route
mode. When select a GK-route mode, users should
register with the secured GK and choose one among the
security profile I/I/III. Fig.7 shows the sample GUI
results of our secured VoIP system.

Y SOSHB ABYLILY
Codag List
M U

Fig.7 The sample GUI results of our secure VoIP

4.2, Results of Registration

When an entity successfully finds out a gatekeeper, it
tries to register with the gatekeeper. In this stage, the
entity sends ‘registrationRequest(RRQ)’ to the
gatekeeper and receives ‘registrationConfirm(RCF)’.
The following shows the result of cryptoToken of RRQ
and RCF of three procedures: Procedure I, IT and II1.

(1) Procedure I mode

registrationRequest
registrationRequest {
requestSeqNum = 2

762

protocolldentifier = 0.0.8 2250.0.2
discoveryComplete = TRUE
callSignalAddress = 1 entrieg {

c-o<OMILLAING. > -----
cryptoTokeng = 1 entries {

[0] =nestedcryptoToken cryptoHashedToken {

tokenGID = 0.0.8.235.0.1.1 =a=m> ®A" : RAS/H.225.0 is hashed
hashedvals = {
tokenOID =« 0.0.8.235.0.1.5 sua> TW ClearToken for

message security
timeStamp = 1027908669
dhkey = {

halfkey =
111111010111011000110110001000100101001010101000000100011101010612101211110%
00101011100101000101100611020111000000111111000101010010101110111111001111010
1001101010101201011100001011012000110101011011111000021300110100111110096110
000111011100010111010011110010001011101101010111101111001001100100101001110Q
100001011001011010110001111110100101110C001000110111111100101001011100%10000
001111110€110000110101010011011001010210111001001001100001101001001010160001
11001011100010001110111111111010100010101000010001101011

modSize =
100100010000001011001000001100011110111000210110000001213111101100110000100013
0100001101111111100011111011001111010110100101001001101011000111161010101011
£0110010101011001561011011310100111000010101011130000111000100001101101121100
0101001011110111011011010000111001011000001001111200000011010100111100110010
1011100011001011111101110000310010001102111111011001110101101169011000000111Q
101011001011011010010110100010110000100110110111010100100102001111€120101010
01110110001000100100100110010100101001001111001010001101

generator =
00000010100010001101011211100110010100111010111101110601011000101100011000000
1000010010110100011001101111200111110010111011000100100111000101110010010010
0010000110010101101101111110010101011000101111111011101000100100111110101110
0101100111011100101101110001001011100010110011001110100110611111001100010000
1121111100111011110010111110111101101100100101010010001001010101100111010010
1001000000001011010101001100010110111010010101100011001100010100000100010011
000010101110101000211060101111000000000100110110101100010

}
random = 624937534
generalilD = 19 characters {
C04f 2070 0065 006e 0067 0061 0074 0065 Opengate
C03a 0020 0068 0073 0074 005f 006d 0061 . hst_ma
0072 0063 0068 rch
}
}
token = {
algorithmOID = (.0.8.235.0.1.6 s==> "U" : HMAC-SHA1-96 is
used
param§ = {

hash =
0100110100101110010000010111001001100011011010000010110101010000011010000
11011110110111001100101

}

keepAlive = FALSE
willSupplyUUIEs « FALSE

¥ registrationConfirm <======
gkclient.cxx(164) H225 Started RAS thread
h323pdu.cxx(1392) H225RAS Received PDU:
registrationConfirm {
reguestSeqgNum « 2
protocolldentifier = 0.0.8.2250.0.2
callSignalAddress = 1 entries {

----- <omiteing..» -----
timeToLive = 600

cryptoTokens = 1 entries {
(0} =nestedcryptoToken cryptoHashedToken {

tokenOID = 0.0.8.235.0.1.1 =asa> "A* : RAS/H.225.0 is hashad
hashedVals = {
tokenOID = 0.6.8.235.0.1.5 asz> "T" : ClearToken for

message security
timeStamp = 1027%C8572
dnkey = {

nalfkey =
12162€218311111000010001000190001011011111011111111110601003111101211561016¢1
0000100110001110030101120110000001010101011020011100000110100100001112611000
00010111111110000101100:1111011101110101000011100100101001100100111010300010
1010010110110011200111011100100000101001010100011001101011110101000110001010
21111111100601102002111110010010101110100001020021600020100000110209210200001
1100000€11000000001110111100010210100111110010020101100111111001101100111011
11000010010101110011101100061100000101110111110100101102

modSize =
1001000100000010110010000011000111101110001101100060001211110110¢110000100610
01000011011211111100011111011001111010110100102001001101011000111101010101011
001100101010110010101101111010011100061010101111000011100020000120110211110C
0101001011210111011€11010000111601011000001001121060050011010100111100210010
10111C001100190111111011100001100100011011111210110011301011011000230000001120
1010110010110110100101101000101100001001101101110102001001010012110120101010
01110116001000100100100110010100101001001111001010001101

generator =
0000001010001000110101111110011001010011101011110111002011000101100011000C00
1000010910110100011001101121100111210010111011000100100111000101110010010010
001000011001010110110111111001010146110001011111110112101000100100113110101110
€101100111011100101101110001001011100010110011001230100120011111001100010000
1111111100111011110010111110111101101100100101010020001001010101160111010010
1001000000001011010101001100010110111010010101100011001100010100000100010011
©00001910111010100011100101111000000000100110110101100010

random = 624937535
----- <OMiLEINg..»> ---=-
token » {
algorithmOID = 0.0.8.235.0.1.6 wax> “U" : HMAC-SHA1-96 is used
param$S = {
hash =

0000001001101000011111110110010011001100010011000113021021312110011110000011
11000001010111111000

}
willRespondToIRR = FALSE

TukenHandler .cxx (142) #h#unnpet This PDU have a GOOD crypto-Token.

h###a444 Auchenticated

(2) Procedure II mode

In this case, only RRQ is shown as following because
RCF has similar structure as RRQ. The digital
signature is shown in place of hashing value.

hi23pdu. cxx (1415} H225RAS Sending PDU

regigtrationRequest |
requestSeqiium - 2
protncolldentif.er - 0.7
discoveryCompiete = TRUE
caliSignralAddeioas =

8 225C 0.2
I ertries |
cfmitoinn

cryproTokens = 1 entries |
{7} snesrederyptaToken cryptoSignadT ken |
tohend10 = T.5.8.235.2.1.2 mEa> wp"
authentication-only
token = {
toBeSigned = |

ClearToken

TuRenLiD = 0.0.8 235 5.1.7 as=> ng* 1
authentication/integrity
timeStamp « 1327998990

/non-repudiation of the
message

(169111010110
11112

ke 3767 JCEl D374 JURS Jpengate

0C3a 0220 HUEB U573 Qulg TISE 3064 Uil hst_ma
1072 6C63 2268 rch
}
}
algertithmGio = l.oo R3IL 113%930 3 1.4 PETS B A 3 RSA-MDS
digital
params - { signature

signature

xeepAlive = FALSE
w1iiSupplyUUIEs = FALSE

- <omitting. > ce---

(3) Procedure IT1 mode

The result of the Procedure III was same as that of the
Procedure II except ‘tokenID=0.0.8.235.0.1.7° being
replaced by ‘tokenID=0.0.8.235.0.1.3". It is shown as
following.

- S comitting cees
cryptoTekens = 1 oentiies
(.} -restedcryproTuken cryptoSignedToken |
tekenSlD = §.0.8.235.0.1.2
token = |
tuBeSigned = |
tokenID = 0.0 8 235.C.1 3 ae=> “R" : end-to-end
timeStamp - 1027303268 authentication-
only
random = 2123244011
generallD =
comitting

5. CONCLUSION

We have designed secured procedures for registrat on
of multiple VoIP terminals and security methods for
call establishments and call controls based on H.235.
The designed security system was developed in
module style that works properly without entire
changes of target system. The algorithms for
encryption, integrity, key distribution and
authentication have been implemented and verif ed
according to RFC2104[4] and RFC2404[5]. The
procedures for registration into gatekeeper and call
establishment in secured methods have been desigred
and developed. These procedures were defined in “he
recommendation H.235 and implemented as a
structure of ANS.1. Finally, the results of secued
communications have been verified and showed taat
performed correctly. The communication tests were
accomplished by using hooked data while call v-as
connected. The results of this tests showed that "he
security components of PDU was correctly compu ed
and could provide the authentication of the entities and
the efficient protection of data. The next step of tais
study will be to design an entire key distribution
system based on X.509{6] and a full managem:nt
system of clients for tolling system.

Referendes

[1] ITU-T H.323, Packet-based
communications systems, ITU-T, 2000.

[2] D.Minoli and E. Minoli, Delivering Voice over IP
Networks, Wiley Computer Publishing, 1998.

{31 ITU-T H.235, Security and encryption for H-
Series (H.323 and other H.245-based) multimedia
terminals, ITU, 2000

[4] H. Krawczyk, M. Bellare, and R. Canetti, HMAC:
Keyed-Hashing for Message Authentication,
Internet Engineering Task Force, Request ‘or
Comments(RFC) 2104, February, 1997,

multime lia

5] C.Madson and R. Glenn, The Use of HMAC-

SHA-1-96 within ESP and AH, Interiet
Engineering Task Force, Request or
Comments(RFC) 2404, November, 1998.

[6) R. Housley et al: Internet X.509 Putlic
Infrastructure Certificate and CRL Profile.
RF(C2459, Internet Engineering Task Force, 1999.

(71 H. Schulzrinne and J. Rosenberg, “Internct
telephony: Architecture and protocols — anlETF
perspective,” Computer Networks and ISDN
Systems, Vol.31, pp.237-255, Feb.1999.

[8] J. Rosenberg and H. Schulzrinne, “An RTP
payload format for user multiplexing,” Intemet
Draft, Internet Engineering Task Force, Jan. 1998.

[9] Versit Consortium, “Computer telephony
integration(CTI) encyclopedia,” Tech. Rep.
Release 1.0, Versit Consortium, Oct. 1996.

[10] M. Handley, H. Schulzrinne, E. Scholler, I.
Rosenberg, “SIP: Session Initiation Protoccl”,
RFC2543, IETF, March 1999.

753

