Introduction to Evolvable Hardware Design

Jong-O, Kim *, Duk-Soo, Kim ** and Young-Gun, Kim ***
* ** Dept of Electronics, Dongyang Technical College, Seoul, 152-714, Korea
Tel : +82-2-2610-1778 Fax : +82-2-2688-5494
E-mail: jokim@dongyang.ac kr, dskim@dongyang.ac.kr
*** Dept of C.I.LP., Ansan College, Ansan-Si, Korea E-mail : ygkim@ansan.ac.kr

Abstract: An area of research called evolvable hardware (EHW) has recently emerged which combines aspects of
evolutionary computation with hardware design and synthesis. The features that can be used to identify and classify
evolvable hardware are the evolutionary algorithm, the implementation and the genotype representation. This paper
gives an introduction to the field. It continues by including classifying the EHW and the applications of the area.

Keywords : Evolvable hardware, genenetic algorithm, genetic programming, chromosome.

1. INTRODUCTION

Evolvable hardware is currently used as an general
term to characterize applications of evolutionary
techniques to hardware design and synthesis. The
history of EHW is not that old. It started
simultaneously in Swifzerland and Japan around 1992
and approximately 1995 in the UK. The first
International Conference on Evolvable System(ICES
96) was held in Japan 1996 [1]. Instead of manually
designing a circuit, only input/output-relations are
specified. The circuit is automatically designed using
an adaptive algorithm which is illustrated in Fig. 1.

Create an initial pool of solutions to a problem

—» Evaluate the solutions and assign a fitness
values
to each of them

yes
Acceptable solutions obtained EXit

b

Select a number of 'parent’ solutions from
the pool based on their fitness scores

Use genetic operatio*s i.e. recombination,
crossover and mutation to generate
a set of new solutions

|

Fig. 1. Standard genetic algorithm.

Genetic algorithms, and more generally evolutionary
algorithms (EAs) find solutions to problems e. g.
complex optimization problems by emulating the way
nature uses biological evolution. They operate on a
population (potential solutions) of constant size, and
uses the principle of survival of the fittest to produce
increasingly better solutions. Many of the terms used
in genetics are also used to specify the operation of
genetic algorithms. A genetic algorithm starts with a

set of random candidate solutions. This set is refered to
as a population, and each solution within the
population is known as a 'chromosome.' (In gene:ics
chromosomes are strings of DNA, each cell in a living
organism contains the same set of chromosoms:s.)
These chromosomes are evaluated and a fitness score
is assigned to each of them, the fitness score is scme
predefined criterion that satisfies.

Next individuals from this graph of chromosomes are
selected based on their fitness scores. A number of
selection procedures are available, among tkem
Holland's assigned fitness-proportional selection is 3ne
of the simplest in which individuals with good fitress
scores have a higher probabilities of being selecred.
The selection process alone can't generate the rew
individuals into the group of chromosomes. In other
words, individuals with better fitness have to be
‘reproduced' from the selected individuals.

New individuals are created using genetic operators
such as crossover and mutation. Crossover recombines
two selected individuals, called parents, by exchanging
parts of their encodings to form two new individuals
off-springs.

One approach to implement crossover operation
between two selected binary strings(chromosomes) is
to partition the strings about a randomly chosen point,
and exchange substrings. To illustrate let us consider
the following two strings, '1’ is the crossover point.

Chromosome 1 00101 10010111000
Chromosome2 00101 01111010111

The crossover operation results in the following ff-
springs.

00101 01111010111
00101 10010111000

Off-spring 1
Off-spring 2

It should be emphasized the selection of a specific

crossover point can improve the efficiency of the
genetic algorithm in solving a particular problem.
Therefore, crossover depends on the binary string
corresponding a particular solution.

Mutation is the random flipping with a very small
probability of any bit in a string e. g. froma 0 to a I,
vice versa altering its value. For example, the sixth bit
in string A below is flipped to form a new string B

509



A=1011010010

B=1011000010

The mutation operator performs the important role of
injecting diversity into a small set of population. In
other words it allows creation of a 'better' gene (binary
string) which then becomes part of the rest of the
population.

However, many genetic algorithm based techniques
do not implement mutation since it has a very low
impact on the search for a solution. This is because, as
stated earlier mutation has a very low probabilities of
changing a bit string corresponding to a solution. Fig.1
presents the structure of the standard genetic
algorithm. An initial pool of solution is first selected,
this initial selection is usually random.

When the number of offspring circuits equals the
number of circuits in the parent population, the new
offspring po pulation is ready to become the new
parent population. The original parent population is
deleted. Thus, one loop
. in Fig.1 is named one generation.

A circuit can be represented in several different
ways|[2}. For digital circuits however, gate level
representation is most commonly used. That is, the
representation contains a description of what kind of
gates are applied and their interconnections. This is
coded into a binary configuration bit stream applied
to configure a reconfigurable logic device as seen in
Fig. 3. This is usually either a commercial device like
a Field Programmable Gate Array (FPGA) or a part
of an Application Specific Integrated Circuit (ASIC).
In addition to the evolutionary algorithm (GA), a
circuit specification would have to be available. This is

Reconfigurable Logic Device

> O D
Inputs 5 D D : Outputs

™ > -

01010101210101010i010101] ~-————— Configurations

Fig. 3. Ilustration of Field Programmable Logic
Device (FPLD).

510

GA

VAN

Chromosorng Fitness Value
\\ y.4
N e Execute /
RN Decade - Swnulate

Circutt + Behaviorat Data Set

Fig. 4. The cycle of evolving a circuit.

often a set of training vectors (input/output mappings)
assembled into a data set. The operation of GA
together with the data set are given in Fig. 4. The most
computational demanding part of GA is usually the
evaluation of each circuit typically named fitness value
computation. This involves inputing data to each
circuit and computing the error given by the deviation
from the specified correct output. A number of
industrial applications has arrived based on EHW. The
target is to find new schemes making EHW applicable
to complex real-world applications.

2. CLASSIFYING EVOLVABLE
HARDWARE

EHW research is rapidly diverging. Thus, to
understand the EHW field of research, a classification
framework would be beneficial [2].

Evolutionary Algorithm A set of major algorithms

exists:

*» Genetic Algorithm (GA)

* Genetic Programming (GP)

» Evolutionary Programming (EP)

The major difference between GA and GP is the
chromosome representation. GA organizes the genes
in an array, while GP applies a tree of genes. Both
schemes apply both crossover and mutation, while EP-
which has no constraints on the representation, uses
mutation only.

Building Block The evolution of a hardware circuit is

based on connecting basic units together. Several
levels of complexity in these building blocks are
possible:

*Analog component [evel: transistors, resistors,
inductors and capacitors.

*» Gate level : OR and AND gates.

» Function Level: sine generators, adders and
multipliers. .

Target Hardware. In EHW, the goal is to evolve a
circuit. The two major alternatives for target hardware
available today are:



*Commercially available devices. FPGAs (Field
Programmable Gate Arrays) are most commonly used.

They consist of a number of reconfigurable digital
gates, which are connected by entering a binary
bitstring into the device. This string specifies how the
gates are connected.

For evolution, normally only a subset of the
configuration bitstring is used. Field-Programmable
Analog Arrays (FPAA) are available as well. They use
the same programming principle as FPGAs, but they
consist of reconfigurable analog components instead of
digital gates.

*Custom hardware. ASIC (Application Specific
Integrated Circuit) is a chip fulfy designed by the user.

Fitness Computation. Degree of fitness computation in
hardware:

«Offline EHW The evolution is simulated in
software, and only the elite chromosome is written to
the hardware device (sometimes named extrinsic
evolution).

» Online EHW . The hardware device gets configured
for each chromosome for each generation (sometimes
named intrinsic evolution).

Evolution. Degree of evolution undertaken in

hardware:

*Off-chip evolution. The evolutionary algorithm is
performed on a separate processor.

» On-chip evolution. The evolutionary algorithm is

performed on a separate processor incorporated into

the

chip containing the target EHW.

Scope The scope of evolution:

*Static evolution. The evolution is finished before the
circuit is put into normal operation. No evolution is
applied during normal operation. The evolution is used
as a circuit optimizing tool.

» Dynamic evolution. Evolution is undertaken while
the circuit is in operation and this makes the circuit
online adaptable.

3. APPLICATIONS OF EVOLVABLE
HARDWARE

Using evolution to design circuits in this way brings a
number of important benefits to electronics, allowing
design automation and innovation for an increasing
range of applications. Some of the more important
areas where evolvable hardware can be applied
include:

e Automatic design of low cost hardware;

Automation has been used in circuit synthesis for
many years. Traditional digital design involves the
mapping of an abstract human-designed circuit to a
specific technology through the application of simple
minimization, placement and routing rules. As our

capability for synthesizing more complex circuits has
grown, so has the need for more resourceful processes
to handle the complex mapping procedures. Evolvable
hardware allows us to take the automation of circuit
production a step further, automating how to generate
the actual circuit design from a behavioural
specification at the same time as automating the circu.it
synthesis process. The behavioural specification
presented to the evolvable system may be as simple as
a series of circuit input signals that the system must
match to a corresponding predefined set of outp.at
signals, although other representations of circuit
behaviour may be used, often including environmental
conditions or simulated error test cases or depending
on the requirements of the circuit

e Coping with poorly specified problems

For some problems it is difficult to specify their
functionality succinctly, but easy to specify a
behavioural description of the problem. Computar
scientists have used evolution for to handle probleris
with such poor specifications for many years. For
instance Higuchi et al. have evolved high-speed robust
classifiers [3]. Good generalisation characteristizs
were incorporated into the solutions by specification >f
a bias based on machine learning theory. More
recently do Amaral et al. evolved fuzzy functions that
can be used as building blocks in the construction >f
fuzzy logic controllers [12].

e Creation of adaptive systems;

With sufficient automation (i.e., real-time synthesis

provided by PLDs), evolvable hardware has taie
potential to adapt autonomously to changes in fts
environment. This can be very useful in situatioais
where real-time manual control over systems is not
possible, such as on deep space missions. It could e
particularly useful when unexpected conditions are
encountered.
Many other adaptive filters have been evolved,
including digital finite impulse response (FIR) filte:s,
commonly used in audio applications such as noise
and echo cancellation [13] and their more complex tut
less reliable counterparts, infinite impulse response
(IIR) filters [14]. Analogue adaptive filters have also
been evolved. For example Zebulum et al. present:d
signal extraction filters capable of adaptively
amplifying the strongest component of the input sigral
whilst  attenuating others, thus improving a
hypothetical signal/noise ratio [15]. Through evolutin
these circuits could be adapted to new input profiles.
On-line scheduling hardware has also been developed,
most notably adaptive cell scheduling systems for
ATM networks, that respond to changes in traffic flow
[16]. In a related field, Damiani et al. have developzd
an on-line adaptive hashing system that could be usz=d
to map cache blocks to cache tags dependent on the
access patterns of the data over time [17].

511



e Creation of fault tolerant systems

Ongoing advances in component miniaturisation have
not been complemented by improvements in
fabrication reliability. This means that many modemn
VLSI circuit designs must be tolerant to fabrication
faults. It is expected that this will become even more
of an issue in future circuit technologies.
Miniaturisation also exposes components to a greater
risk of operational faults, for instance due to the effects
of power fluctuations or ionising radiation. Reliability
is of paramount importance for many systems such as
medical equipment and transport control systems.
Military and spacecraft systems are particularly
susceptible to reliability problems as they are regularly
subjected to harsh conditions. Current techniques for
fault tolerance rely on the presence of additional
redundant components and thorough testing either at
the point of manufacture or on-line, and add
considerable cost and design complexity. Fortunately
evolvable hardware provides a number of mechanisms
to introduce fault tolerance into circuits.

An early demonstration of this ability was that of
Higuchi et al.[3], where an adaptive hardware system
that learned the behaviour of an expert robot controller
by example using a genetic algorithm. More recently
Vigander demonstrated that a simple evolutionary
system could restore most but not all functionality to a
4bitx4bit multiplier that had been subjected to random
faults [18]. Zebulum et al. demonstrated evolutionary
recovery with a 4 bit DAC that had initially been
evolved using traditionally-designed operational
amplifiers and smaller DACs evolved in earlier
experiments as building blocks. A number of other
bio-inspired on-line autonomous hardware fault
tolerance mechanisms have been developed for both
fault detection [19] and recovery [20]. Although these
have been proposed as a platform for evolutionary
experiments, they do not use evolution as an adaptive
repair mechanism, and so will not be considered
further here.

e Innovation in poorly understood design spaces.

Traditional circuit designers tend to work on a problem
from the top down, decomposing the problem in to
smaller sub-problems that have limited interactions,
and repeating the process that until only a number of
small problems remain that are well understood in the
field of circuit design, and have known solutions.
Evolution works differently. It works from the bottom
up, adding components together to make partial
solutions to the design problem, which are in turn
combined and tinkered with, until the solution meets
the design criteria. Perhaps the most successful
application of evolution to complex design spaces is
the automatic design of antennas. Traditional antenna
designs are based on a handful of known, regular
topologies. Beyond these the interactions between
elements become too complex to abstract. Linden has
demonstrated that evolution is capable of discovering
an array of highly unconventional, irregular antenna

512

designs [21] and has shown that evolved antennas can
be evolved and operate effectively in real-world
settings using transmission of real data [22] and where
the signal path is obstructed [22]. Such is evolution’s
performance when applied to antenna design that an
evolved antenna is undergoing flight qualification
testing for NASA’s upcoming Space Technology 5
mission [23] and if successful will be the first evolved
hardware in space.

4. CONCLUSIONS

The problems of electronic circuit design are
increasing as demand for improvements increases. In
this review we have introduced a promising new type
of solution to these difficulties - evolvable hardware.
This emerging field exists at the intersection of
electronic engineering, computer science and biology.
The benefits brought about by evolvable hardware are
particularly suited to a number of applications,
including the design of low cost hardware, poorly
specified problems, creation of adaptive systems, fault
tolerant systems and innovation.

Evolvable hardware is still a young field. It does not
have all the answers to the problems of circuit design
and there are still many difficulties to overcome.
Nevertheless, these new ideas may be one of the
brightest and best hopes for the future of electronics

References

[11 X. Yao and T. Higuchi, Promises and challenges of
evolvable hardware," in Evolvable Systems: From
Biology to Hardware. First Int. Conf., ICES 96, T.
Higuchi et al., Eds. Springer-Verlag, 1997, Lecture
Notes in Computer Science, vol. 1259.

{2] Jim Torresen. Evolvable Hardware as a New Computer
Architecture. ICAIEB (SSGRR 2002W), January 2002,
L'Aquila, Italy.

[3

—

T Higuchi et al.,, Evolvable hardware: A firrst step
towards building a Darwin machine," in Proc. of the 2nd
Int. Conf. onSimulated Behaviour. 1993, pp. 417-424,
MIT Press.

—
PN
—

Goldberg, Genetic Algorithms in search, optimization,
andmachine learning, Addison Wesley, 1989.

[5] J. Torresen, Possibilities and limitations of applying
evolvable hardware to real-world application.,” in Field-
Programmable  Logic and  Applications:  10th
International Conference on FPL-2000, R.W Hartenstein
et al., Eds., pp. 230-239. Springer-Verlag, 2000, Lecture
Notes in Computer Science, vol. 1896.

[6] Sechen (1988). VLSI Placement and Global Routing
Using Simulated Annealing. Boston, MA, U.S.A, Kluwer

Academic Publishers.

[t}

[7] Yih, J. S. and P. Mazumder (1990). "A Neural Network
Design for Circuit Partitioning." /EEE Transactions on
Computer Aided Design 9(10): 1265-1271.

[8] Mazumder, P. and E. M. Rudnick (1999). Genetic
Algorithms  for VLSl Design, Layout and Test
Automation. Upper Saddle River, NJ, U.S.A_, Prentice-
Hall.



[9] Rumelhart, D. E., B. Widrow, et al. (1994). "The Basic
ldeas in Neural Networks." Communications of the ACM
37(3): 87-92.

[10] Higuchi, T., M. Iwata, et al. (1996). Evolvable
hardware and its application to pattern recognition and
Jault-tolerant  systems.  Proceedings of Towards
Evolvable Hardware: An International Workshop. 2 3
Oct. 1995 Lausanne, Switzerland, Springer-Verlag,
Berlin, Germany.

[11] Iwata, M., 1. Kajitani, et al. (1996). A4 pattern
recognition system using evolvable hardware. 4th
International Conference on Parallel Problem Solving
from Nature PPSN IV, Berlin, Germany, Springer-
Verlag, Berlin, Germany.

[12] do Amaral, J. F. M., J. L. M. do Amaral, et al. (2002).
Towards Evolvable Analog Fuzzy Logic Controllers.
2002 NASA/DoD Conference on Evolvable Hardware,
Alexandria, VA, U.S.A., IEEE Press.

[13] Tufte, G. and P. C. Haddow (2000). Evolving an
adaptive digital  filter. Proceedings. The Second
NASA/DoD Workshop on Evolvable Hardware. 13 15
July 2000 Palo Alto, CA, USA, IEEE Comput. Soc, Los
Alamitos, CA, USA.

[14] Sundaralingam, S. and K. C. Sharman (1998). Evolving
Complex Adaptive IR Structures. 9th European Signal
Processing Conference, Rhodes, Greece.

[1S] Zebulum, R. S., D. Keymeulen, et al. (2003).
Experimental results in evolutionary fault-recovery for
field programmable analog devices. 2003 NASA/DoD
Conference on Evolvable Hardware, Chicago, IL, USA,
[EEE Comput. Soc, Los Alamitos, CA, USA.

[16] Liu, W., M. Murakawa, et al. (1997). ATM cell
scheduling by function level evolvable hardware. 1st

International Conference on Evolvable Systerrs,
Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[17] Damiani, E., V. Liberali, et al. (2000). Dynamic
Optimisation of Non-linear Feed-Forward Circuits. 3-d
International Conference on Evolvable Systerrs,
Edinburgh, U.K.

[18] Vigander, S. (2001). Evolutionary Fault Repair >f
Electronics in Space Applications. Trondheim, Norway,
Norwegian University Sci. Tech.

[19] Bradley, D. W. and A. M. Tyrrell (2001). The
architecture for a hardware immune system. Proceedin:s
Third NASA/DoD Workshop on Evolvable Hardware.
EH 2001. 12 14 July 2001 Long Beach, CA, USA, IEEE
Comput. Soc, Los Alamitos, CA, USA.

[20] Macias, N. J. and L. J. K. Durbeck (2002)._Se:f-
assembling circuits _with autonomous fault _handlinz.
2002 NASA/DoD Conference on Evolvable Hardwarz.
15 18 July 2002 Alexandria, VA, USA, [EEE Comptt.
Soc, Los Alamitos, CA, USA.

[21] Linden, D. S. and E. E. Altshuler (1999). Evolving wi.e
antennas  using  genetic  algorithms: a  review.
Proceedings of the First NASA/DoD Workshop ¢n
Evolvable Hardware. 19 21 July 1999 Pasadena, CA,
USA, IEEE Comput. Soc, Los Alamitos, CA, USA.

[22] Linden, D. S. (2002). An evolvable antenna system for
optimizing signal strength in-situ. IEEE Antennas ard
Propagation Society International Symposium. vol.l 16
21 June 2002 San Antonio, TX, USA, IEEE, Piscataway,
NJ, USA.

[23] Lohn, J, G. Larchev, et al. (2003). 4 Genetic
Representation for Evolutionary Fault Recovery in Virtox
FPGAs. 5th International Conference on Evolvable
Systems, Trondheim, Norway, Springer-Verlag.

513



