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Abstract

When X and Y have independent two parameter exponential distributions, we develop
a Bayesian testing procedures for the equality of two location parameters. Under the
noninformative prior, we propose a Bayesian test procedures for the equality of two
location parameters using fractional Bayes factor and intrinsic Bayes factor. Simulation study
and some real data examples are provided.
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1. Introduction

The two parameter exponential distribution plays an important role in the field of life
testing and reliability theory since it is the only continuous distribution with a constant hazard
function. The reciprocal of the scale parameter is the hazard rate. The location (threshold)
parameter can translate the distribution along the time axis, so it is also known as the
minimum life or guarantee time parameter. The guarantee time parameter can be used to model
warranty periods for some products.

The present paper focuses on Bayesian testing procedure for the equality of two location
parameters. In Bayesian testing problem, the Bayes factor under proper priors or informative
priors have been very successful. However, limited information and time constraints often
require the use of noninformative priors. Since noninformative priors such as Jeffreys’ priors or
reference priors (Berger and Bernardo, 1989, 1992) are typically improper so that such priors
are only defined up to arbitrary constants which affects the values of Bayes factors.
Spiegathalter and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996) have made
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efforts to compensate for that arbitrariness.

Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-splitting idea,
which would eliminate the arbitrariness of improper priors. O’Hagan (1995) proposed the
fractional Bayes factor. For removing the arbitrariness he used to a portion of the likelihood
with a so-called the fraction . These approaches have shown to be quite useful in many
statistical areas.

For the statistical inference of the exponential distribution, Epstein and Tsao (1953) studied
some statistical tests for two exponential distributions. Epstein and Sobel (1954) obtained the
minimum variance unbiased estimator for the scale and location parameters. The shrinkage
estimators for the scale parameter have been proposed by Bhattacharya and Srivastava (1974).
Chiou and Han (1989) proposed a pre-test estimator and a pre-test shrinkage estimator for the
location parameter. Chion and Miao (2004) studied the shrinkage estimator for the difference
between location parameters.

Almost all the work mentioned above is the analysis based on the classical point of view,
there is a little work on this problem from the viewpoint of the objective Bayesian framework.
Because the two parameter exponential distribution is the non-regular case, so the
noninformative priors such as reference prior or probability matching prior were hard to derive.
Almost all theory related to these priors were developed based on the assumption of regular
distribution. Recently, Ghosal (1997, 1999) developed the procedures to derive the reference
and matching priors for non-regular cases. Using his results, we feel a strong necessity to
develop objective Bayesian testing procedure for the difference between location parameters. For
dealing this problem, we use the fractional Bayes factor (O’Hagan, 1995) and the intrinsic
Bayes factor (Berger and Pericchi, 1996).

The outline of the remaining sections is as follows. In Section 2, using the noninformative
priors, we provide the Bayesian testing procedure based on the fractional Bayes factor and
intrinsic Bayes factor for the testing equality of two location parameters. In Section 3,
simulation study and some real examples are given.

2. Bayesian Test Procedures
2.1 Preliminaries

Models (or Hypotheses) H,, H,,---, H, are under consideration, with the data =x
=(xy,x9, ** ,x,) having probability density function f(x) 4;) under model
H;i=1,2,--,q. The parameter vectors @, are unknown. Let 7z 6,) be the prior
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distribution of model H,, and let p, be the prior probabilities of model H,,:=1,2,:, ¢
Then the posterior probability that the model H; is true is

-1

i | D= 55 By (W

where B is the Bayes factor of model H; to model H; defined by

mj( x) _ ff,( X I 0,')71','( 0;)(1 0,'
mi x) ffi( x| 0)n( 8)d 0,

Bj= @

The Bj; interpreted as the comparative support of the data for the model ; to 7. The
computation of B needs specification of the prior distribution ,( 6, and x,(6). Usually,
one can use the noninformative prior, often improper, such as uniform prior, Jeffreys prior,
reference prior or probability matching prior. Denote it as x. The use of improper priors
() in (2) causes the B to contain unspecified constants. To solve this problem,
O’Hagan (1995) proposed the fractional Bayes factor for Bayesian testing and model selection
problem as follow.

When the 7¥( 6,) is noninformative prior under H;, equation (2) becomes

L [#x1 ari ey e,
A=l 0¥ 0)d 6,

Then the fractional Bayes factor of model H; versus model H, is

[ACx1 8y 6)d 0,

BE=BY. ,
[ A=l 8)x}C 0)a 6,

and f( x| @,) is the likelihood function and » specifies a fraction of the likelihood which is
to be used as a prior density. He proposed three ways for the choice of the fraction &. One
frequently suggested choice is b= m/n, where m is the size of the minimal training sample,
assuming this is well defined. (see O’Hagan, 1995, 1997 and the discussion by Berger and
Mortera of O’Hagan, 1995).

Berger and Pericchi (1996) proposed the intrinsic Bayes factor (IBF) for Bayesian testing
and model selection. The arithmetic intrinsic Bayes factor is given by



18 Sang Gil Kang, Dal Ho Kim, Woo Dong Lee

Bl=BY- L B,
where
mx() _ JAxD | 09X 0)d 0,
m(xD) [ )2 6)d 6,

Bi(x())=

Here x(/) is minimal training sample and L is the number of all possible minimal
training samples.

2.2 Bayesian Test
Let X be a two parameter exponential distribution with density function
Ax| 9,0 = %exp{—-xj;—’l }, x>y, 60, 3

where 7 is the location parameter (guarantee parameter) and ¢ is the scale parameter. Suppose
that X=(X,,-,X,) is a random sample of size », from a two parameter exponential
distribution with location parameter 7, and scale parameter 6, and Y=(Y;,-,Y,) is a
random sample of size 7z, from a two parameter exponential distribution with location
parameter 7, and scale parameter @#,. Then the joint probability density function is

Rz, v m,m,61,6) = 6] "6; “exp{— nl(’gl_ m _ n2(3;;- 7) b,

where 6,50, 6,50, x> 7,i=1,,n; and y;>7,7=1,,my, and x and y are the sample
mean for each population.

We want to test the hypotheses Hi:7, =7, vs. Hyp#75,. Our interest is to develop a
Bayesian test based on the fractional and intrinsic Bayes factors for H, vs. H, under the

noninformative priors. The two parameter exponential distribution is belong to non-regular cases.
However for non-regular cases, the reference and probability matching prior is developed by
Ghosal (1997,1999). In our model (3), the reference prior is given by (7, 8) < 1/6.

2.2 Bayesian Test using the Fractional Bayes Factor

Under the hypothesis H),, the reference prior for 7(=7,=7,), 6, and 6, is
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m(7, 01, 02) = n(7, 6)n(n, 6) = 6, '6,".

The likelihood function under H, is

m(z—n _ n(y—2 Y

L(, 6,6, x, %) = 6;™0; "exp{— 2 2

Then the element of fractinal Bayes factor under H, is given by

mf(x,y) — fo *-vfo fo Lb(% 0,,0, | x, y)yrl(”’ ‘91’02)0151‘102‘1”
= (nlb) —ﬂlb(nzb) —nzbl-(nlb)l_(n2b)j(‘) X.y(}_ 77) —nlb(;_ 77) —nzbd”’

19

where m , ,= min <<, 1 <j<n, (x;, ¥;}. For the H,, the reference prior for 7,, 7,, 6, and 8, is

7f2(771 , 72, O, 32) = 7T(771, 91)7T(7lz, 92) = (91_15'2_1-

The likelihood function under H, is

nl(;“ 771) _ nz(}_ ’72)

L(771’ 772’ 01’ 92 I x, y) —_ el_nlez_nzexp{_ 61 02 }.

Thus the element of fractional Bayes factor under H, gives as follows.

my(z, y) = fo fo fo fo L%7y, 72,01, 02 | x, 10y, 0y, 0y, 05)d0,d6,dnydn,
1 -mb —nyb

[(;_mx) —n1b+1_(}) —n|b+l][ (}_my) —n2b+1_(;) “ﬂzb+l]’

X

where m .= min <, {x;} and m,= min <, {y;}. Therefore the BY is given by

[G=m) " = (R " G=my) " =y 7Y

N __
Ba= (m—D(m— D %,9)
where
S(x,y) = fomw(}— n  "(y—n " "dy.
And
mi(x, y) (m16—1)(n6—1)S% %, )

mé’(x, y) [(._x_mx) —n1b+1___x —n,b+l][ (—y___my) -n2b+1____y -—n;b+1] »

@
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where

Sz = [ G G- .
Thus the fractional Bayes factor of H, versus H, is given by

(76— 1)(n,6—1) S x, )

(= D(ny—1)S(x, )
[(—.’-‘_mx) —n,+1_(7€) —n1+1]( (—;/_ my) —n2+1_(_y) —ﬂz+1]
[Cx—my) " =T 7 Cy—my) 70 =Ty 7

Foo_
Ba =

Note that the calculation of the fractional Bayes factor of H, versus H, is requires a
one dimensional integration.

Remark. In the calculation of mi(x, ), if #»b is 1, then m¥(x, 3 is
log( x/(x—m,)). In like manner, if .6 is 1, then mi(x, y) is log( y/(3— m,)).

2.3 Bayesian Test using the Intrinsic Bayes Factor

The element By, (4), of the intrinsic Bayes factor is computed in the fractional Bayes
factor. So using minimal training sample, we only calculate the marginal densities
m™x;,x;,v,,v) under H, and H,, respectively.

The marginal densities m{(x;,x;,v,,v,) under H, is given by

mf’(xi,x,'.%,yl) = fo fo fo f(xi,xjryk,yll %91,02)7?1(77, (91,‘92)d61d92d77

= ﬁ) (xi+xj_zﬂ)—z(Yk+J’1—277)~2d77
= T(xi,xj,yle,yl)'

where 1<i(j<n;,1<k(/<n, And the marginal density m)(x, x,, v, vy, under H, is
given by
mév(xi»xj,J’k,.VI)

fo xfo yfo fo f(xi,xj, Ve, }'1| 71, 72, 01, 32)71’2(771,772, 0y, 92)d02d91d712d7h
m,m,
(it x ) (vt y)(xi+ 2= 2m )y + y,—2m,) *

Il

Therefore the IBF of H, versus H, is given by

o= 1 (it 2)(Wat y) (x4 2= 2m)(yat+ y— 2m) Txi, %), Vi ¥0)

Fa = Ltz; ("1_1)(712—1)3(.:,3))—

[G=my "' =G "N (G=—m) " =) ™"
mmy

X

’
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where L= n,(n;—1)n,(ny—1)/4. Note that the calculation of the IBF of H, versus H, is
requires a one dimensional integration. In Section 3, we investigate our testing procedures using
some real examples.

3. Numerical Examples

Example 1. To investigate the Bayesian test procedures, we examine the cases when
(6:,60,)=(1,3),3,1), (m;,72)=(1,1),(1,2),(1,3) and (=, n,)=(5,5) ,(5,10),(10,10)
(10,20). The posterior probabilities of H, being true are computed assuming equal prior
probabilities. The Table 1 shows that the results of the averages and the standard deviations in
parentheses of posterior probabilities for each case based on 1,000 replications.

From the Table 1, when (7,,7,)=(1,1), the fractional Bayes factor does not select H,
for some small sample size cases. However the intrinsic Bayes factor gives fairly reasonable
answers. Also for moderate sample sizes, the fractional and intrinsic Bayes factors give fairly
reasonable answers.

[Table 1]. The averages ( the standard deviations) of posterior probabilities

(61, 62) (71, 72) (ny,mp) Pi(H, | z,y) | P(H |x)
13 11 55 0.4699(0.1280) 0.5870(0.1598)
5,10 0.5122(0.1491) 0.6552(0.1752)

10,10 0.5491(0.1572) 0.6984(0.1749)

1020 0.6245(0.1696) 0.7703(0.1713)

12 55 0.3269(0.1171) 04187(0.1519)

5,10 0.2034(0.1273) 0.2866(0.1732)

10,10 0.1786(0.1038) 0.2721(0.1541)

1020 0.0376(0.0448) 0.0657(0.0713)

13 55 0.2133(0.1011) 0.2997(0.1427)

5,10 0.0591(0.0522) 0.0915(0.0883)

10,10 0.0482(0.0432) 0.0865(0.0768)

1020 0.0014(0.0026) 0.0026(0.0051)

31 L1 55 0.4682(0.1257) 0.5839(0.1594)
5,10 0.4861(0.1409) 0.6154(0.1650)

10,10 0.5449(0.1616) 0.6900(0.1799)

1020 0.5755(0.1649) 0.7210(0.1755)

1.2 55 0.2669(0.1816) 0.3113(0.2228)

5,10 0.1673(0.2285) 0.1969(0.2644)

10,10 0.0826(0.1671) 0.1021(0.1981)

1020 0.0237(0.1042) 0.0290(0.1227)

13 55 0.1181(0.1367) 0.1270(0.1600)

5,10 0.0415(0.1384) 0.0446(0.1524)

10,10 0.0037(0.0277) 0.0042(0.0315)

1020 0.0005(0.0121) 0.0006(0.0139)
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Example 2. The data in Table 2 is taken from Bain and Engelhardt (1991). Suppose a
certain additive is proposed for increasing the length of time of tread wear of a tire. Suppose
40 of the present and 40 tires made under the new process are placed in service and the
experiment is continued until the 20 smallest observations are obtained for each sample.

The value of fractional Bayes factor and arithmetic intrinsic Bayes factor of H, versus

H, is B%=0.1314 and B =0.0563, respectively. We assume that the prior probabilities are
equal. Then the posterior probability for H, is 0.8839 and 0.9467, respectively. Thus there
are strong evidence for H, in terms of the posterior probability.

[Table 2]. Length of time of tread wear

10.03 10.47 10.58 11.48 11.60 12.41 13.03 13.51
Present 1448 1696 17.08 17.27 17.90 18.21 19.30 20.10
20.51 21,78 21.79 25.34
10.10 11.01 11.20 12.95 13.19 14.81 16.03 17.01
Additive 18.96 24.10 24.15 24.52 26.05 26.44 28.59 30.24
31.03 33.51 33.61 40.68

Example 3. Proschan (1963) gives the time of successive failures of the air conditioning
system of each member of a fleet of Boeing 720 jet airplanes. The hours of flying time
between failures are listed Table 3 for two of the planes.

The value of fractional Bayes factor and arithmetic intrinsic Bayes factor of H, versus
H, is B5=4.0977 and B, =1.3836, respectively. We assume that the prior probabilities are
equal. Then the posterior probability for H, is 0.1962 and 0.4195, respectively. Thus there
are evidence for H, in terms of the posterior probability

Therefore both of the fractional and intrinsic Bayes factors factor give reasonable answers
in our examples.

[Table 3). Time of successive failures

Plane 7911 55 320 56 104 220 239 47 246 176 182 33
23 261 87 7 120 14 62 47 225 71 246 21
Plane 7912 4220512120113 14 71 11 14 11 16
90116595
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