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Abstract: New concept of hybrid divisible load theory is introduced in this paper. Hybrid system
deals with a combination of modularly divisible load and arbitrarily divisible load. Main idea of
hybrid divisible load theory is introduced with a simple example. A condition of optimality is

derived for the hybrid case.
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1. INTRODUCTION

Main objective in parallel and distributed computing
systems is the minimization of processing time of the
work/jobs by exploiting concurrent computing across
multiple processors. Minimizing the processing time
involves designing efficient scheduling algorithms as
well. In general the scheduling problem addresses the
following question: What is the best possible way to
organize a given work load so that it can be completed
in the shortest possible time? An efficient. scheduling
algorithm distributes the workload (or processing load)
in an optimal manner to the set of available processors
in the system so that the processing time of the entire
load is minimum. Traditionally, there has been a large
amount of research works available in the literature in
the context of scheduling indivisible and modularly
divisible loads (see Figure 1).
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Figure 1. Schéduling schemes based on divisibility

During last decades, there is a great deal of attention
focused on arbitrarily divisible load scheduling problem
in a distributed computing system/network consisting of

processors interconnected through communication links.

Research in the scheduling of divisible loads started in
1988. A divisible load can be divided into any number
of fractions, and can be processed independently on the
processors, as there are no precedence relationships. In
other words, divisible load has the property that all the

elements in the load require the same type of processing.

Thus, this load can be partitioned into any number of
load fractions, and can be processed independently in
the processors available in the distributed computing
system. In a distributed computing environment, this
load originates at one of the processors. This processor

divides the load into many fractions, keeps one of the
fractions for itself to process/compute and sends the
remaining load fractions to other processors in the
network. The objective here in this scheduling problem
is that of finding the load fractions assigned to each
processor in the network so that the processing time of
the entire processing load is as small as possible and, if
possible, minimum. The load fractions assigned to the
processors are processed in parallel. In a distributed
computing system, the communication delay (i.e., the
time to send a load fraction to a processor) plays a
major role in determining the load fractions assigned to
the processors that minimizes the processing time of the
entire load.

The original problem of scheduling divisible loads
incorporating the communication delay is addressed in
the context of distributed intelligent sensor networks in
[6]. In [6], the timing diagram representation of the load
distribution process and the recursive load distribution
equations are presented. This problem is framed as a
partitioning technique for large grained parallelism and
a linear programming formulation is given in [1]. The
methodology from [6] is extended to single level tree
network and bus network in [2, 7]. In these studies [2, 6,
7], the load fractions assigned to the processors are
obtained by assuming that all the processors involved in
the computation process stop the computing at the same
time instant. This assumption has been shown to be
necessary and sufficient condition to obtain optimal
processing time in a linear network [14]. Using the
concept of processor equivalence, an analytical proof
for optimal load sharing in a bus network is discussed
in [15]. However, it has been rigorously proved that this
condition is true only in a restricted sense [4] (i.e., for
the case of a heterogeneous single level tree network).
A closed-form expression for the processing time is
presented in [3, 12] for the case of a single level tree
network, and using this closed-form expression, optimal
sequence of load distribution and optimal arrangement
of links and processors in the network are obtained in
{3]. For the case of a homogeneous network (all the
processors have the same computational capability and
all the links have the same communication capability in
the network) an asymptotic performance analysis for
the processing time is carried out in [5, 11, 13]. The
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domain of divisible load scheduling has simulated
considerable amount of interest among researchers and

many more results in this area are available in [4, 8, 16].

Recent research papers in this area can be found in [17].

In this study, scheduling problem of hybrid divisible
load, i.e., a combination of arbitrarily divisible load and
modularly divisible load, is considered. As is shown
before, arbitrarily divisible load can almost always be
scheduled optimally. However, modular load can never
be optimally scheduled since it is an NP-complete
problem. This paper derives the condition of optimal
scheduling in a single-level tree network. Needless to
say, the theory can be extensible to any topology such
as bus, daisy-chain, hypercube networks, and so on.
Once the problem formulation meets the condition the
optimal fraction of load can be obtained optimally. The
closed-form solution is provided in this paper. This
work is just a starting point of optimal scheduling of
hybrid divisible load theory. Thus, this paper just tries
to convey basic concept of the hybrid divisible load
theory.

2. PREVIOUS WORKS

The traditional scheduling of divisible loads depends
on the architecture of the distributed computing system.
For an example, we consider a single-level tree network
with (m+1) processors and m links, where the child
processors py, pi, ..., Pm are connected to the root
processor po via links Iy, b, ..., I,,. The processing load
originates at the root processor po. The root processor
divides the total processing load into m+1 parts keeping
the fraction g for itself to process and/or compute and
distributes the remaining load fractions &, o, ..., G, to
the child processors p, p»,. ..., P One after other for
processing. It means that the root processor distributes
the load fractions to the other processors in the network
in the sequence p,, ps, ..., pm- Each processor in the
network starts computing immediately upon receiving
its load fraction. We now define the standard notations
used in divisible load scheduling literature.

Figure 2. A sample of tree network processors

Notations
1) o load fraction assigned to processor p;;
2) w; ratio of the time taken by processor p;, to

compute a given load to the time taken by a
standard processor, to compute the same load;

3) T, time taken by a standard processor to
process a unit load;

4) z: ratio of the time taken by communication
link [;, to communicate a given load to the
time taken by a standard link to communicate
the load;

5) T, time taken by a standard communication
link to send a unit load.

Based on these notations, we can see that aw,T,, is
the time to process the load fraction ¢; of the total
processing load by the processor p;. In the same way,
awT,, is the time to communicate the load fraction «;
of the total processing load over the link / to the
processor p;. We can see that both aw,T, and aw,T,,,
are in units of time. In divisible load scheduling
literature, timing diagram (see Figure 3) is the usual
way of representing the load distribution process. In this
timing diagram the communication process is shown
above the time axis and the computation process is
shown below the time axis.
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Figure 3. Timing diagram with front-end processors

The root processor may or may not be equipped with
a front-end (a.k.a. communication co-processor). If the
root processor is equipped with a front-end processor,
communication of load fractions to other processors and
the computation of its load fraction can be done at the
same time. If the root processor is not equipped with a
front-end, the root processor first distributes the load to
other processors and then starts its computation.

Load fractions are derived based on the following set
of equations:
awT i=0,.,m-1 (1)

Pi7Vitep

=.

i+l w

i+chp + a'H Zi+lT'

i cm

and the normalization equation is given as follows:

Sa =1 @
i=0

The above equations can be rewritten as follows:
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These recursive equations can be solved by expressing
all the ¢; (i=0,1,...,m-1) in terms of &, as

a=a,]1f 5)

j=ith

From the normalization equation the fraction ¢, can be
expressed as

1
a, = — 6)
1+> [14
i=l k=i
and the load fraction ¢; can be expressed as
[1/
o =—L )
1+ [1%
=l k=j

3. HYBRID SCHEDULING

Here, assume that two processors are available in a
network. In addition, a modularly divisible load and an
arbitrarily divisible load are placed in the root processor.
The root processor should allocate appropriate fractions
of load. The modularly divisible load means a load that
‘cannot be divisible arbitrarily. For the simplicity of the
mathematical modeling, assume that the modularity of
the modularly divisible load is one, which means that it
is actually an indivisible load. Root processor keeps the
modularly divisible load and, if possible, some fractions
of arbitrarily divisible load. It allocates the rest of the
appropriate fraction of arbitrarily divisible load to the
child processor. The problem is to decide the fractions
of load including modularly divisible load.

Two-processor example conceptually simplifies the
modeling of divisible load scheduling and is insightful.
The two-processor example can recursively be extended
to the general problems.

Assume that the length of the modularly divisible
load is L, and that of arbitrarily divisible load is M. The
length should be modeled or defined exactly. It can be
an amount of data to be processed physically. However,
its definition is beyond the scope of this paper. Figure 4
shows the length of inhomogeneous loads. The problem
is to put the loads into fractions. Therefore, the physical
length of load itself is meaningless. The two loads are
put into one logical load (see Figure 4) and their lengths
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are normalized such that

b= L .
L+M

®)

Due to the property of inhomogeneous combination
of loads, modular divisible one and arbitrarily divisible
one, Equation (1) should be expressed more elaborately.
By the traditional setting of divisible load, Equation (1)
assumes that O, (05)= ¢ and O, (05)=0; where Og(%)
is computational complexity of fraction ¢; and On(%)
is communication complexity of fraction ¢;. Then, two
complexity terms can be incorporated into the following
form:

0, (o, )wT,

i“cp = Ocp (a'ﬂ )wi+chp

+0, (e,)z;uT.,, i=0,..m-1 (9)
Under these assumptions that both complexities are
linear such that O,(%)= ¢; and O...(¢;)=a; Equation (9)
is exactly equal to Equation (1).
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(a) Length of each load before normalization
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(b} Load normalization

Figure 4. A hybrid load with normalized length 1.

Then the problem can be formulated in four cases
regardless of the processing sequences. The two cases
based on complexities are considered in the following
subsections.

3.1. Homogeneous Case

First assume that the computing complexity and the
communication complexity of both loads are the same
and linear such that O,,()= & and O,,(0;)=0;. Then, it
is easy to calculate the fractions based on (1) and (2) or
Equations (9) and (2). Then, we can straightforwardly
get result as follows: .

wT +2zT
ao = 1% cp 1% cem (10)
WOTcp + Wchp + Zchm
It is clear that if
o, 2b (11

then the solution (10) is optimal. This fact is obviously
clear.
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3.2. Heterogeneous Case

Assume that the communication complexity of two
loads is either same or different, and the computational
complexity is either same or different. Then, Equations
(9) and (2) can be rewritten to cope with two different
loads as follows:

0, ®W,T,, +0,,(a, —byw,T,, =0, (1-a)wT,,
+0,,(1-0,)zT,, (12)

under the assumption of (11).

Solving Equation (12) is tricky. Thus, for the sake of
simplicity, an example is provided.

Example: Assume that the computational complexity
of modularly divisible one is given as 0,b)=b and

that of arbitrarily divisible part as 0,,(@,—b) = 2(a, - b)
and 0_(1-a,)=20-a,)> While 0 (1-a)=1-¢- In
this case, the optimal fraction is given as follows:

2wl +2zT,, +bw,T,,

a, (13)

- 2w0Tcp + 2w,Tcp +zT, )

4. CONCLUSIONS

A new concept of hybrid divisible load theory is
introduced in this paper. Hybrid system deals with a
combination of modularly divisible load and arbitrarily
divisible load. Main idea of hybrid divisible load theory
is introduced with a simple example. A condition of
optimality is derived for the hybrid case. An example of
heterogeneous case is presented. Heterogeneous case is
a generalized case where computational complexity and
communication complexities are different. In this paper
very simple case in considered. Thus, extension of this
work will be done. ‘
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