* Solving Integer Programming Problems
Using Genetic Algorithms

Pham Nguyen Anh Huy" and Chu Tat Bich San” and E. Triantaphyllou™
* Faculty or Inoformation Technologies, Natural Sciences University, Hochiminh City, Vietnam
Tel : +084-08-8 354 266 Fax : +084-08-8 350096
E-mail: pnahuy@fit.hcmuns.edu.vn, ctbsan@fit.hcmuns.edu.vn

**Department of Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803-6409, USA
Tel : 225-578-5372 Fax : 225 578-5990 E-mail: trianta@lsu.edu

Abstract: There are many methods to find solutions for Integer Programming problems (IPs) such as
the Branch-Bound philosophy or the Cutting Plane algorithm. However, most of them have a
problem that is the explosion of sets in the computing process. In addition, GA is known as a
heuristic search algorithm for solutions of optimization problems. It is started from a random
initial guess solution and attempting to find one that is the best under some criteria and
conditions. The paper will study an artificial intelligent method to solve IPs by using Genetic
Algorithms (GAs). The original solution of this was presented in the papers of Fabricio Olivetti
de Frangaand and Kimmo Nieminen [2003]. However, both have several limitations which causes
could be operations in GAs. The paper proposes a method to upgrade these operations and
computational results are also shown to support these upgrades.

Keywords: Integer programming, Genetic algorithms, optimization.

1. INTRODUCTION

This paper will study an artificial intelligent method to
solve IPs by using Genetic GAs. The original of this
was presented in [1] and [2]. Moreover, the paper will
show several limitations of 1] and [2] in some cases
which a global optimization can not be obtained.
Causes could be operations in GAs. Then the paper
also proposes a method to upgrade them.
Computational results are also shown which support
these upgrades. Basic concepts supporting the paper
will be presented in section 2 such as concepts in GAs,
presentation of IPs in GAs. Section 3 is some
discussions and proposes to upgrade the method.
Finally, experiments and comparison will be presented
in section 4.

2. BASIC CONCEPTS

2.1, GAs

There are many methods to find solutions for IPs, but
most of them are often too complicated in calculations
such as Bound-Branch philosophy. In addition, GA is
known as a heuristic search algorithm for solutions of
optimization problems. It is started from a random
initial guess sotution and attempting to find one that is
the best under some criteria and conditions, [2].

In GA, a gene is presented by a real number or bit, and
a chromosome is a set of genes. A population is a set
of . chromosomes which are produced in different
generations. Operations are defined for a population as
follows.

400

e Selection operation selects the best
chromosomes from the population for the
next generation.

e Crossover operation CrOSsses two
chromosomes to create two new
chromosomes for the population.

¢ Mutation operation mutates a chromosome
into a new chromosome by inverting
randomly selected genes of the chromosomes.
[2] is presented a GA in pseudo code as
follows.

N = number of generations

P, = {x;: x; R" i=l.. L}is a set of chromosomes in
the k-th generation, and I, denotes the size for k = I,
wo N

Algorithm “Genetic Optimizer”
Create an initial population P; = {x;: x; R i=1.1,).
For (k= 1; k<=N; k++) {

If a good enough solution x € P is found then
x* = x; exit

Else {
- Crossover operation for a number
of chromosomes,_ of population Py
This leads to an enlargement of Py.
- Mutation operation on the
chromosomes that were created
during crossover.
- Select a set of best chromosomes
from population Py to population
Py, for the next generation.

2.2. Presentation of IPs in GAs

- Let consider an IPs:
maximize P = CX
Subject to: AX=b
X are integers and X>=0
Where X= (x|, Xa... X;), AGR™" and b= (b, b,... by)
Example 1: Maximize P = 8*x; + 9%x; + 10%x5 + 9%*x4
+ [2%xg+ 11%x,
Subject to:
X+ X3+ X3 <= 550
X4 + X5+ Xg <= 700
X1 + X4 <= 390
X + X5 <= 460
X3 + Xg <= 370
X1, X2, X3, X4, X5, Xg INtEEETS
X1, X2, X3, X4, X5, Xg >= 0

2.2.1. Genes and Chromosomes, population

(11 proposes a method to present genes and
chromosomes as follows. A gene corresponds to a
variable x;, a chromosome is a set of x; = X and its
fitness is assigned by the value of object function. In
addition a population is a set of chromosomes which is
often presented in an array of chromosomes. The gene
is presented in an array of bits, thus the chromosome is
also an array of bits with its size = n * sizeof (gene).
Using bits to present genes make for crossover and
mutation operations more “active”, because this way
can generate new numbers by swapping or inverting
bits in operations.

Example 2: from example 1 we have six genes x;,
X3... X¢. Each x; is an array of bits which size is
calculated by assign “zero” the others. Let’s take x,
variable as an example

Xx;+ 0+ 0<=1550

X + 0 <= 390
From this we can see that x; is no more than 390 and it
means that x; can be presented in 9 bits (because 390

is 110000110 in binary). Calculating number of bits
for others we get:

X = Xo = X3 = X4 = X5 = X = 9 bits

And a chromosome is an array of bits with it size = 9
*6 = 54 bits. To visualize, we present a gene and a
chromosome in figure 1.

Gene
Bit Bit | Bit | Bit | .Bit | Bit | Bit | Bit | Bit
! 2 3 4 5 6 7 3 9

And Choromosome

P(X)- "IM i * Vi 1 S i ¥ VCi
ﬁtness_value={ (X) ,Zl: Ci*VCi(X) tfP(X)>;MC VC{(X)

0 otherwise
M

Where P(X) is value of chromosome X from object
function P.

MC; is measure of importance of i-th
constraint.

VCi(X) is value of X at i-th constraint and it
is calculated in equation 2

VC{X) = {g"’(X)=bi ifAx) > bi

otherwise

Example 3 from example 1, suppose X=(1,1,1,1,1 1)
and MC; = 20 for each constraint, the value of VCi(X):

VC(X) = (1 + 1 +1 -550>0)? (1 + 1 +1 -550): 0=0
VCH(X) = (1 + 1 +1 -700>0)? (1 + 1 +1 -700): 0 =0
VCy(X) = (1 +1 - 390>0)? (1 + 1 - 390): 0=0
VCy(X) = (1 +1 - 460>0)? (1 + 1 - 460): 0 =0
VCs(X) = (1 +1 -370>0)? (1 +1-370):0=0

And P(X) =8 + 9 + 10+ 9 + 12 + 11 = 59,
thus fitness_vlaue =59

2.2.3. Selection, crossover, and mutation opergtions

2.2.3.1 Crossover operation

Inputs of this operation are two chromosomes in the
population and outputs are two new chromosomes made
by crossing between two input chromosomes. [1] is
proposed in a simplest form which chooses a random
point and let’s slice each chromosome into two parts
and exchange those parts to generate two new
chromosomes. The operation is visualized by figure 2.

Inputs: Chromosome 1 & Chromosome 2

Chromosome 1

. Bi{ “Bit, g “Bit -.r Bit ' Bit

B

Chromosome 2

Bit| .. | Bit [Rit | . Bit | Bit 4, P Bit] Bie . | Bit
! 9 i 9 1 9 i 5

Bit{ .. { Bit{Bit} ., | Bit|Bit}.. |Bit|Bit| .. | Bit [Bit]| .. | Bit
1 9 1 9 1 9 1 9 1 9

Fig I: An example of a gene and chromosome

2.2 2 Fitness value

The fitness value is an important factor in GAs. It
defines a score which gives each chromosome the
probability to be chosen for breeding or to live. [1]
proposes the fitness value based on equation 1 as
follows.

Outputs: Chromosome 3 & Chromosome 4
Chromosome 3

. Bit_ Bit" .-
9. 1 "

-Biv
O

Chromosome 4

[Bit] .. | Bit]Bit !
[1 9 {1 Al 09

LB B

Figure 2: An example of crossover operation

2.2.3.2 Mutation operation

A mutation operation is also a method to create a new
chromosome from another chromosome in the
population. The new chromosome bases on changing
value at a bit from O to 1 or otherwise. In 1], the
position doing the mutation operation is a random
point. This operation is visualized by figure 3.

401

Chromosome

Bit | .. | Bit
1 9

Bit | Bit | .. | Bit [Bit | .. | Bit

Figure 3: An example of mutation operation

Where Bit Inv is a bit which is chosen to mutate.
2.2.3.3 Selection operation

After doing crossover and mutation operations, a new
population is created and next operation will select
chromosomes continued alive or eliminable in next
generation. [1] proposes a select operation based on
the Roulette works by calculating probability of a
chromosome to be selected based on its fitness and
sum of all fitness of the population and then this
probability is compared with a random value for the
selection. This operation is visualized by figure 4.

Before selection After selection
Chromosome |

Chromosome 1

Selection =~ |
operation

Chromosome n

Chromosome m

Figure 4: An example of selection operation

[

2.3. Flowchart of GAs using in IPs

The figure 5 is a presentation of the algorithm genetic
optimizer in section 2.1.

3. DISCUSSIONS AND PROPOSES

GAs is a heuristic method to search an optimization.
Sometimes, the method can be obtained the best value
in several generations but also it has to pass many
generations to obtain the best value. In this section, we
will compare the method using GAs for IPs with
others such as the most popular Branch Bound
Algorithm for a visual theory and experiments proving
these statements will be presented in section 4.
Moreover, several limitations of [1] will be presented
in company with proposing solutions to upgrade them.

3.1. Comparison between solving IPs by GAs and
other algorithms

3.1.1 Advantages

Using GAs is a natural thinking which everybody can
understand easy. In addition, GAs can avoid an
explosion in branching on the tree which is a big
limitation of Branch & Bound Algorithm. Moreover,
its calculations are not too complicated in the approach
finding a solution. Finally, GAs can be applied to solve
others such as linear programming and non linear
programming problems.

402

3.1.2 Disadvantages

Because GAs is a heuristic method to search an
optimization, sometimes the method can obtain the
best value after many generations and this value is
only an approximation of the global solution. In
addition, the answer of the question “How many
generations can do to obtain the global solution?” does

not have accuracy respond.

Init random N
chromosomes (1)

>

Crossover (2)

\ 4
Mutation (3)

v

Finding the best
chromosome
(BEST_TURN)
based on the
fitness (4)

v

Select random N
chromosomes (5)

Next
generation

Output BEST_TURN
(the best chromosome
in the generation) (6)

More
training set

Output the optimal
solution (7)

Figure 5: Flowchart of GAs using in IPs

3.2. Limitations of [1] and proposes

[1] has some limitations which affect converging speed
to the optimal solution as follows. In mutation
.operation, chromosomes are not mutated at different
positions, instead of this is only at a position
corresponding to a variable. It means that only value of
a variable in the chromosome is adjusted and others
are not changed. It affects the converging speed to the
optimal solution. To upgrade, we propose mutation at
all variables and an algorithm for the mutation
operation as follows.

For each x; do
Position = Random (0, BIT-1)
// BIT is number of bits of x;
Mutation (x;, Position)

End for

In addition, the selection operation in [1] is not based
on the best fitness value of the last generation to
eliminate. Instead of this randomizes chromosomes
selected for the next generation. Consequently,
chromosomes selected may not be the best fitness
value. This leads to decrease of the converging speed
to the optimal solution. To upgrade, we propose an
algorithm for the selection operation as follows

Step 1: Sort chromosomes bases on the fitness value
Step 2: Select N chromosomes from step 1 in order

The new algorithm selects chromosomes having the
best fitness values. This works will be done by
arranging chromosomes based on fitness values and
select from first n chromosomes.

4. EXPERIMENTS

In this section, the paper will present computational
results from running three different programs: Lingo
Ver8.0 with Branch & Bound Algorithm, {1] and the
upgrades using GAs. First, the paper will show a set of
problems using in experiments in section 4.1 and then
evaluations based on these problems present in section
4.2.

4.1. Problems

Problems in experiments come from sample files of

4.2. Evaluations

Experiments will be deployed on a computer with

configuration as follows.
Progessor :
RAM

P4 266MHZ
1GB

Problems have results in execution time (in seconds),
optimal solution and number of iterations in Table 2, 3
and 4 corresponding to the Branch & Bound algorithm

in Lingo Ver8.0, 1] and the upgrades respectively.

Table 2: Solving Problems use Lingo Ver8.0

Name Execution| Optimal | #lterations
time (in value
second)
CAPLOC 2 327 22
IFCOST 3 150 9
JOBLST 1 19 0
MPSCHD 8 5385 42
ASGN 5 760 - 20
SONGS 1 5 0
STAFFPTR 2 0 0
INTPTD >42 Infeasible
SAMPLE2 5 Local 1965
- optimal:
14750

Table 3: Solving Problems use GAs in [1]

Name Execution | Optimal - | #lterations
time (in value
second)
CAPLOC 8 320 150
IFCOS 11 139 150
JOBLST ©5 19 150
MPSCHD 30 5340 150
QASGN 23 738 150
SONGS 5 ~ 5 150
STAFFPTR 8 0 150
INTPTD 42 1570 250
SAMPLE2 536 Global 1965
optimal:
) 14776

Table 4: Solving Problems use the upgrades

Lingo in Table 1. Name | Execution Optimal: | #lterations
time (in value
Name Number of Number of second)
variables constraints CAPLOC 6 326 150
CAPLOC 15 8 IFCOS 9 146 150
IFCOS 25 35 JOBLST 5 16 150
i JOBLST 7 8 MPSCHD 27 5383 150
MPSCHD 67 44 QASGN 20 758 150
QASGN 48 44 SONGS 5 5 150
SONGS 7 2 STAFFPTR 8 0 150
STAFFPTR 14 7 INTPTD 41 1800 250
INTPTD 13 14 SAMPLE2 514 Global 1965
| SAMPLE2 4 3 optimal:
14792 N

Table 1: Problems

403

From above Table at column “Execution time”, we -

see that Lingo gets results faster than [1] and the
upgrades. However in INTPTD problem, Lingo
gives an infeasible result while [1] and the upgrades
find an integer solution. Moreover in SAMPLE2
problem, Lingo obtains a local optimal solution
after 1965 iterations while {1] and the upgrades
obtain a global optimal solution after 1965
iterations. Thus GAs is able to find a solution that
satisfies integrality constraints if we do not limit to
the execution time.

Moreover in column “optimal value” from Table 2, 3
and 4, we can see that the upgrades obtain an
approximating optimal solution closer the global
optimal solution than [1] in same number of iterations
and execution time of the method is faster than [1].

5. CONCLUSION

Although the paper’s results did not prove better than
Lingo, using GAs in IPs opens a new method to solve
not only IPs but also linear or nonlinear problems.
Results encourage us to find a new method by justify,
modify and refine this approach.

404

[1].

[2].

6. REFERENCES

Fabricio Olivetti de Franca — “Solving Integer

Programming Problems Using Genetic

Algorithms”.

Website

http://ai-depot.com/Articles/48/Programming. html.

Kimmo Nieminen, Sampo Ruuth — “Genetic

algorithm for finding a good first integer solution
-~ for MILP”.

Website

[4].

http://www.doc.ic.ac.uk/research/technicalreports
/2003/DTRO3-4.pdf.

. Maros, 1., Nieminen, K, Ruuth, S — “Genetic

algorithm for finding the first integer solution in
Branch and Bound algorithms” - 20th IFIP
Conference on System Modelling and
Optimization, Trier, Germany, July 2001.

Simon Mardle and Sean Pascoe, “An overview of
genetic algorithms for the solution of optimisation
problems”.

Website
http://www.economics.ltsn.ac.uk/cheer/ch13 1/ch
13 1pl6.htm.

