Sound System Analysis for Health Smart Home

  • 발행 : 2004.08.01

초록

A multichannel smart sound sensor capable to detect and identify sound events in noisy conditions is presented in this paper. Sound information extraction is a complex task and the main difficulty consists is the extraction of high­level information from an one-dimensional signal. The input of smart sound sensor is composed of data collected by 5 microphones and its output data is sent through a network. For a real time working purpose, the sound analysis is divided in three steps: sound event detection for each sound channel, fusion between simultaneously events and sound identification. The event detection module find impulsive signals in the noise and extracts them from the signal flow. Our smart sensor must be capable to identify impulsive signals but also speech presence too, in a noisy environment. The classification module is launched in a parallel task on the channel chosen by data fusion process. It looks to identify the event sound between seven predefined sound classes and uses a Gaussian Mixture Model (GMM) method. Mel Frequency Cepstral Coefficients are used in combination with new ones like zero crossing rate, centroid and roll-off point. This smart sound sensor is a part of a medical telemonitoring project with the aim of detecting serious accidents.

키워드