C-3. Ectopic bone formation associated with recombinant human bone morphogenetic proteins -2 using absorbable collagen sponge and beta tricalcium phosphate as carriers.

김창성, 김준일, 최성호, 채중규, 김종관, 조규성.

연세대학교 치과대학 치주과학 교실, 치주과학 재생 연구소, BK21 의과학 사업단

Background

The ectopic bone formation of recombinant human bone morphogenetic protein-2(rhBMP-2) was evaluated using absorbable collagen sponges (ACS) and beta tricalcium phosphate (β -TCP) as carriers in a rat subcutaneous assay model.

Materials and Methods

Subcutaneous pockets were created on the back of rats. The pockets were implanted with rhBMP-2/ACS, rhBMP-2/-TCP, ACS alone, and -TCP alone. The rats were sacrificed at 2 or 8 weeks for histological and immunohistochemical evaluation.

Results and Conclusion

At 2 weeks, bone formation was evident in both the rhBMP-2/ACS and rhBMP-2/ β -TCP sites. At 8 weeks, the quantity of the new bone with a more advanced stage of remodeling had increased further in the rhBMP-2/ β -TCP sites. However, the newly formed bone observed at 2 weeks was not found in the rhBMP-2/ACS sites. On immunohistochemical observation, osteopontin staining was observed on both the rhBMP-2/ACS (2 weeks) and rhBMP-2/ β -TCP (2 and 8 weeks) sites. Osteocalcin was not detected in any of the samples. The lack of space-providing capacity of ACS may be one of the major factors responsible for its failure to maintain the newly-induced bone. Therefore, a carrier for BMPs should provide space for bone formation and maturation during the more advanced healing stages.

Acknowledgements

This study was supported by grant No. R01-2004-000-10353-0 of the Basic Research Program of the Korea Science & Engineering Foundation.