L1-B4 초음파 리니어 모터의 동작 특성
김형식, 박태곤
창원대학교

Driving Characteristic of L1-B4 Type Ultrasonic Linear Motor
Hang-Sik Kim, Tae-Gone Park
Changwon Univ

Abstract
An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L1-B4 ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and driving characteristics, The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement, stator vibrator of respectively width 3, 5, 7[mm] was fabricated and experimented. as results When width was 5[mm], the driving characteristics was good

Key Words : Ultrasonic Linear Motor, Finite Element Method, ANSYS, Longitudinal Mode, Bending Mode

1. 서론

앞서서라믹을 사용하는 초음파 모터는 앞서서라믹의 신속한 발전에 따라 매우 빠른 속도로 발전하고 있다. 전자기 모터와는 메커니즘이 전혀 다른 초음파 모터는 전기입력에 의하여 진동체의 미소한 탄성진동을 일으키고, 이 탄성진동을 이용한 마찰력에 의하여 회전운동을 발생시키는 모터이다. 전자기식 모터에 비하여 소형이며 간단한 구조를 이루고 저속에서 높은 토크를 발생한다. 특히 린어 모터는 기어를 사용하지 않고 정밀위치 제어가 가능한 X-Y 스테이지 등의 구성에 유용하다.[1] 초음파 모터의 원리는 수평파 수직방향(χ 그리고 Y축)에서의 변위가 탄성품 운동을 형성하는 것이다. 따라서 선택한 탄성운동의 방식에 의해서 모터의 형상이 달라진다.[2]

L1-B4 초음파 리니어 모터는 공진주파수에서 공진동과 횡진동의 결합에 의해서 만들어졌다. 유한요소해석 프로그램인 ANSYS에 의한 초음파 모터의 해석은 주로 공진 주파수 해석과 공진 모드에 따른 변위량 해석으로써 최적 모델설계에 유용하게 사용이 되었다.[3] 폭이 다른 3가지 고정전동 자 모델이 공진주파수에서 구동될 때 탄성체 표면의 변위량을 해석하여 최대 변위의 모델을 결정하였으며, 최대의 변위점에 변위확대기구를 부착하여 더욱 향상된 초음파 리니어 모터를 설계, 개발하였다.

2. 이론

2.1 L1-B4 리니어 모터의 구조와 동작원리

그림 1은 고정전동자이다. 탄성체의 1차 공진동모드(L1)와 4차 공진동모드(B4)의 두 진동모드를 이용하고 있다. 진동원인 압전소자는 각 모드의 공간적 위치가 다른 위치에서 접합시켰고, 90도 위상차가 나는 교류 전원을 인가하면 L1모드의 진동과 B4모드의 진동을 동시에 발생시킬 수 있다. 따라서 공진동(L1모드)과 4차의 공진동(B4모드)이 동시에 일어나고, 그림 3과 같이 이 두 모드가 합성된 결과로 두 변위확대기구에서 타원진동을 일으킨다.
킬 수 있다. 이 타원진동에 의해 슬라이드를 이동시키게 된다.

\[f_{Bn} = \frac{a^2 t}{4 \pi \sqrt{3} E} \sqrt{\frac{E}{\rho}}, \quad a_n \approx \left(\frac{2n+1}{2} \right) \pi \]

\[f_{Ln} = \left(-\frac{n}{2l} \right) \sqrt{\frac{E}{\rho}} \]

(1) (2)

\[f_{Ln} = f_{Bn} \]

\[l = \frac{a^2 t}{2 \pi \sqrt{3}} \]

E, \rho, l, t는 각각 탄성체의 영률, 밀도, 길이, 두께를 의미한다.

식 (3)조건에서 탄성체를 설계하여야 가장 좋은 효율을 얻을 수 있다. 따라서 식(1)과 (2)를 식(3)에 대입함으로써 식(4)를 구할 수 있다. 식 (4)로부터 탄성체의 길이와 두께 그리고 공진주파수를 결정할 수 있다. 위의 식에서 설계한 알루미늄 탄성체의 치수는 길이 l과 두께 t는 각각 37, 2\(\text{mm}\)이다.

2.3 폭에 따른 변위 특성

\[\text{그림 2.4} \text{ 횡진동 모드는 압전세라믹} \]

\[\text{그림 2.5} \text{ 탄성체의 압전세라믹의 폭 변화에 의한 변위량} \]
고정진동자의 최적설계를 위하여 탄성체와 세라믹의 폭을 같이 변화시키면서 유한요소해석프로그램인 ANSYS 7.0을 이용하여 변위량을 해석하였다. 세라믹의 횡진동 모드(transverse mode)는 그림 2.4의 (x/z)^2과 (x/y)^2이 모두 10이상일 경우에 나타난 모드이다.[5] 탄성체의 길이를 37[mm], 두께 2[mm], 세라믹의 길이 9[mm], 두께 0.5[mm], 세라믹과 세라믹의 간격을 1[mm]로 일정하게 하고 폭을 변화시켜 변위량을 비교하였다. 그림 2.5에서 알 수 있듯이 (x/y)^2이 클수록 변위량이 증가하며 횡진동 모드조건을 만족하는 폭이 작아질수록 X, Y축 방향의 변위가 커짐을 알 수 있었다.

또한 탄성체의 제철에 따른 변위량 해석에서 알루미늄합금이 스테인리스강보다 변위 특성이 우수하였다.

3. 실험

3.1 탄성체의 제철 및 크기에 따른 속도 및 효율 특성

알루미늄 합금과 스테인리스강의 두 가지의 탄성체로 그림 2.1과 같은 형태의 모터를 제작하여 실험하였다. 폭의 변화에 따른 모터의 동작 특성을 측정하기 위해 길이와 두께를 37[mm]와 2[mm]로 고정하고, 폭을 3, 5, 7[mm]로 변화시켜 제작하였다. 동작주파수는 폭에 관계없이 일정하며 탄성체가 알루미늄합금으로 이루어진 모터는 67kHz, 스테인리스강으로 이루어진 모터는 61kHz 부근에서 각각 동작하였다.

그림 3.1은 각 모터의 공전주파수에서 전압에 따른 속도 및 효율을 나타내었다. 두 제철 모두 5, 3, 7[mm] 손으로 속도가 높게 나타나며, 전압에 비례하여 속도가 증가함을 알 수 있다. 효율은 그림에서와 같이 5[mm]폭을 갖는 모터에서 크게 나타났으며, 최대 효율은 알루미늄합금은 60[V]에서 1.8(%), 스테인리스강은 50[V]에서 1.4(%)였다. 폭이 증가수록 변위 크기가 커지는 해석 결과와는 달리 5[mm]에서 3[mm]에서 보다 속도 및 효율 특성이 좋았다. 폭이 증가수록 X축 변위량은 증가하나 전체 구동력은 감소하는 것으로 여겨지며, 이 부분은 앞으로 더 연구가 필요하다. (그래프의 자세분자에서 AL-알루미늄합금, ST-스테인리스강, 송자는 폭, Vel-속도, EF-효율을 각각 나타낸다.)

3.3 탄성체의 제철 및 크기에 따른 추력 특성

그림 3.2은 각 탄성체 제철에 따른 추력 특성을 나타낸다. 제철 및 폭에 따라 최대 추력이 발생하는 전압은 모두 다음을 알 수 있다.

알루미늄합금의 경우 5, 7, 3[mm]순으로 전압에 따른 추력이 높았으며, 스테인리스강의 경우 전압에 따른 추력 특성 변화가 심하였다.
그림 3.3 는 각 재질 중 특성이 가장 좋은 폭 5mm
인 모터의 속도 및 추력 특성을 비교하였다. 탄성
체에서 탄성계수란 밀도에 중요한 영향을 미치며,
알루미늄 합금이 스테인리스강보다 변위특성이 좋
게 나은 유한 요소 해석 결과와 일치함을 알 수
있다.

4. 결과 및 고찰

L1-B4 초음파 리니어 모터를 제조할 때 동작
특성에 영향을 미칠 수 있는 탄성체 재질 및 크
기에 따른 영향을 유한요소 프로그램으로 해석하
였으며, 폭을 3, 5, 7mm로 변화시켜 제조하여 그
동작특성을 비교하였다. 알루미늄 합금이 스테인리
스강보다 동작특성이 우수하였다. 인가 전압에 따
른 속도는 5, 3, 7mm 순서로 높았으며, 추력은
입력전압에 따라 모두 그 특성이 다르게 나타났으
며, 전체적으로 두 재질에서 5, 7, 3mm 순서로
전압에 따른 추력 특성이 높았다. 본 논문에서는
재질 및 폭의 모터의 동작 특성에 미치는 영향을
보았으며 모터의 제조 또는 제어 시 고려되어야
할 것이다.

참고 문헌

[1] Toshiiku Sashida, Takashi Kenjo, "An
Introduction to Ultrasonic Motors",
OXFORD, 1993

[2] Yoshiro Tomikawa, Toshiharu Ogawara,
Sumio Sugawara, Masashi Konno and Take
hiro Takano, "Construction of Ultrasonic
Motors and their Application", Japanese
195-197, 1988

[3] 임태빈, 성해경, "Atiia에 의한 평판형 고정진
동자의 변위량 해석", 전기전자제료 제11권,

[5] 신병철, "압전특성 평가기법", 과학과 기술,
Vol. 6, No. 1, 1991