Modeling of plasma etch process using genetic algorithm and radial basis function network

유전자 알고리즘과 레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링

  • 박경영 (세종대학교, 전자공학과) ;
  • 김병환 (세종대학교, 전자공학과)
  • Published : 2004.11.11

Abstract

플라즈마 공정 모델 개발에 역전파 신경망이 가장 많이 응용되고 있으나, 관여하는 다수의 학습인자로 인해 그 최적화가 매우 어렵다. Radial basis function network (RBFN)은 관여하는 학습인자의 수가 적어 그 최적화가 상대적으로 용이하지만, 두인자의 다양한 조합에 의해 RBFN의 예측성능이 상당히 영향을 받을 수 있다. 본 연구에서는 학습인자 상호간의 작용을 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 최적화하는 기법을 소개한다. 제안하는 알고리즘을 광도파로 제작을 위해 수행한 실리카 식각공정 데이터에 적용하여 평가하였다. 평가에 이용된 식각 응답은, 실리카 식각률, aluminum (Al) 식각률, Al 선택비, 그리고 실리카 프로파일 각도이다. 최적화한 모델은 종래의 모델과 비교하였으며, 그 향상도는 실리카 식각률, Al 식각률, Al 선택비, 그리고 실리카 프로파일 각도에 대해서 각 기 0.8%, 32.4%, 20.3%, 1.3% 등이었다. Al 식각률과 선택비에 대해서 예측성능은 상당이 향상되었다.

Keywords