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Abstract

A novel method for ab initio prediction of protein tertiary structure s, PROFESY (PROFile
Enumerating SYstem), is introduced . This method utilizes seconda ry structure prediction information and
fragment assembly. The secondary structure prediction of proteins is performed with the PREDICT
method which uses PSI-BLAST to generate profiles and a distance measure in the pattern space. In order
to predict the tertiary structure of a protein sequence, we assemble fragments in the fragment library
constructed as a byproduct of PREDICT. The tertiary structure is obtained by minimizing the potential
energy using the conformational space annealing method which enables one to sample diverse low lying
minima of the energy function. We apply PROFESY for prediction of some proteins with known
structures, which shows good performances. We also participated in CASPS and applied PROFESY to
new fold targets for blind predictio ns. The results were quite promising, despite the fact that PROFESY

was in its early stage of development. In particular, the PROFESY result is the best for the hardest target

TO161.
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Introduction

Understanding how a protein folds into the unique
tertiary structure (the three-dimensional structure)
of its native state solely from its sequence
information is a great challenge in modern science.
In particular, determination of protein tertiary
structures from amino-acid sequences alone is one
of the most important problems in molecular
biology. Determining the tertiary structure of a
protein is very important in understanding the
function and biological role of the protein.
Currently, genome-sequencing projects are
producing a great amount of linear amino-acid
sequences. An exponential growth of protein-
sequence database in recent years by far outpaces
the experimental determination of protein tertiary
structures that provides high-resolution structure
information for some proteins. Therefore, in the
field of protein-structure investigation, it becomes
increasingly more popular to resort to
computational methods as a complementary
structure

of

approach to the experimental

determination. Computational prediction
protein tertiary structures will provide structure
information on many proteins whose structures
are not be determined experimentally. However,
prediction of protein tertiary structures based on
sequence information alone is a long-standing
challenge in computational molecular biology [ 1-
3]

The most successful methods for protein structure
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prediction have been the so-called knowledge-
based methods such as comparative (or
homology) modeling and fold recognition (br
threading) [1-3]. These methods make direct use
of experimentally determined structures, for
example, those in the protein data bank (PDB).
When the amino-acid sequence of a target protein
with the unknown structure is related to that of
one or more proteins with the known structures,
the structures will also be similar. Therefore, the
first step in protein structure prediction is to
identify if the sequence of the target protein is
homologous to other sequences in the sequence
databases. Next, if homologies are found, then a
multiple sequence alighment is generated for the
homologues of the target sequence. If there is an
experimental structure (that is, a template) for a
homologue, comparative modeling methods are
applied for predicting the tertiary structure of the
target protein. In comparative modeling [1,4-14],
the target sequence is aligned on to template(s),
and then an all-atom structure of the target protein
is produced after filling in the alignment’s gaps
and orienting side chains. If there is no obvious
homologue, fold recognition methods are used to
search for distant homologue or an analogous fold.
In fold recognition from amino acid sequence [15
25], the tertiary structure of the target protein is
predicted by threading the target sequence
through each of the structures in a database of
already known folds. Each sequence-structure
alignment is assessed by a designed sequence-
structure fitness function (usually a pseudoenergy
function), not by sequence similarity. The main

disadvantage of knowledge-based methods is that

there must be a sequence with known structure



that is related to the target sequence.
When homologous or weakly homologous
sequences with known structures are not available,
we turn to ab initio methods (or new fold
methods) to predict the tertiary structure of a
target protein [1,26-38]. Ab initio protein structure
prediction is based on the thermodynamic
hypothesis[39] which states that the native
structure of a protein corresponds to the global
minimum of its free energy in a given
environment. Ab initio methods based on the
thermodynamic  hypothesis will be truly
successful if there are both an accurate energy
function and an efficient global-optimization
method for searching the resultant energy
landscape at the same time. There are a few ab
initio methods that are solely based on potential
energy and global-optimization methods [29-31,
33). However, most of ab initio methods use
information on known structures to some degree.
That is why Moult et al. [40] have suggested that
the term “new fold methods” should replace the
traditional term “ab initio methods”. Currently, ab
initio methods based solely on potential energy
are not so successful as those based directly or
indirectly on available structural information [1-3,
32].

In this paper, we introduce a novel method for ab
initio prediction of protein tertiary structure,
PROFESY (PROFile Enumerating SYstem). This
method utilizes secondary structure prediction
information and fragment assembly. The
secondary structure prediction of proteins is
performed using the method PREDICT (PRofile
Enumeratibn DICTionary), recently developed by

Joo et al. [41]. For a given protein sequence,
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PREDICT uses a sequence-comparison method,
PSI-BLAST[42], to generate profiles which
define patterns for amino acid residues. Each
pattern is compared with those in the pattern
database generated from the PDB, and the
patterns close to the query pattern is selected to
determine the secondary structure of the query
residue. In order to construct the tertiary structure,
we also collect the backbone dihedral angles
along with these patterns. These constitute a
library of fragments for a given protein sequence.
In order to obtain the optimal tertiary packing of
these fragments, we define an energy function
based on the number of long-range hydrogen
bonds, the radius of gyration, and the inter-residue
Lennard-Jones interactions to avoid steric clashes.
Replacement of fragments by the ones in the
library is carried out so that the energy function is
locally minimized. The global minimization for
the energy function is performed by the
conformational space annealing method (CSA)
[43-45] that enables one to sample diverse low-
lying minima of the energy function. The
resulting three-dimensional structure of the
global-minimum conformation is used as a

prediction for the tertiary structure of the target

protein.

Methods (Materials and Methods/
Systems and Methods etc)

Construction of Fragment Libraries

The fragment library used in PROFESY is
constructed as a by-product of the novel method
of secondary structure prediction PREDICT,
which was developed recently by Joo et al. (2003).



For each residue of the query protein, a window
of size 15 is constructed, whose center is located
on the residue under consideration. The fragment
library is the collection of twenty fragments
corresponding to the twenty nearest patterns to
that of the center residue. A conformation is
constructed by assembling the fragments in these
libraries, and the conformations with low energies
are obtained by the CSA method (See Methods).
The energy function (See Methods) we minimize
consists of Lennard-Jones type potential that is
introduced to prevent the steric clashes, and the
term that favors the formation of hydrogen bonds.
When the radius of gyration exceeds a cutoff Ry,
only the radius of gyration is minimized. It should
be noted that since the only selection criteria for
the fragments in the fragment library are the
similarity of their pattern with that of the query
residue, their amino compositions do not have to
be the same as the query protein. Therefore, in our
method, the conformation we construct from the
fragment assembly does not have the side-chains,
and we cannot use an explicit solvation energy

term.

Generation of Random Conformations

A random conformation is built from N- to C-
terminal. Since the size of each fragment is fifteen
residues, the first fragment is centered on the
eighth residue. Therefore we first randomly pick a
fragme_nt from the fragment library corresponding
to the eighth residue. Next we randomly pick a
second fragment from the library corresponding
to the ninth residue. The first and second

fragments have fourteen overlapping residues.

Among these residues, we inspect whether there
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is any residue whose dihedral angles have the
same value for these two fragments. The dihedral
angles are considered to have the same value if
the backbone dihedral angles ¢ and y are within
30 and 45 degrees, respectively. If we find such a
residue, then the second fragment is joined
smoothly to the first one starting from this residue.
If we cannot find such a residue, then another
fragment is picked from the library, and this
process is repeated until we can find a fragment
that can be joined smoothly to the first fragment.
The third fragment is picked from the library
corresponding to the tenth residue, and the whole
process of picking and smoothly joining the
fragments continues until the whole chain is
constructed up to the C-terminal. If at any stage
we cannot find a fragment that can be joined
smoothly to the previous one, then the previous
fragment is replaced by another one in the
corresponding library, and the process of fragment'
assembly is repeated.
Fragment Replacement and the Local
Minimization of the Energy

A conformation is minimized with respect to
energy by randomly choosing a residue and
attempting to replace it by another one in the
corresponding library. If the fragment has at least
two residues whose dihedral angles agree with the
neighboring fragments, then it can be joined
smoothly to these neighboring fragments, similar
to the case of random conformation generation.
The dihedral angles are regarded as having the
same value if ¢ and y are within 30 and 45
degrees. If the resulting conformation is lower in

energy, we accept the new conformation. This



process is continued 10N, times, where Nyq is
the length of the protein, or until the update
attempt fails for Ng, times, whichever is

encountered first.

Global Search Using Conformational Space
Annealing Method

The  low-lying local  minimum-energy
conformations are obtained by a powerful global
optimization algorithm, conformational

annealing (CSA) method [43-45]. The uniquenéss

space

of the CSA method lies in the way it controls the
diversity of the conformations in the bank. In
order to efficiently find the global minimum
without getting trapped in a local minimum, it is
important to sample wide regions of the phase
space with less emphasis on obtaining low energy
conformations in early stages. We gradually shift
the emphasis from maintaining the diversity of the
sampling to obtaining low energy conformations
in the bank. As in simulated annealing, we
introduce an annealing parameter Dy, that plays
the role of temperature in simulated annealing.
The diversity of sampling is directly controlled in
CSA by introducing a distance measure D(A,B)
between two conformations A and B and
comparing it with D.,. The value of Dy, is slowly
reduced just as in simulated annealing as a CSA
run proceeds.

Here, we shortly mention how a CSA run
proceeds. We first randomly generate a certain
number of initial conformations (for example,
100) whose energy is subsequently minimized by
fragment replacement described earlier. We call
the set of these conformations the first bank. We

make a copy of the first bank and call it the bank.
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The conformations in the bank are updated in
later stages, whereas those in the first bank are
kept unchanged. Also, the number of
conformations in the bank is kept unchanged
when the bank is updated. We then choose a
certain number of conformations (seeds) from the
bank and perturb them by replacing parts by the
corresponding parts of conformations randomly
chosen from the first bank or the bank. Then the
energies of these conformations are subsequently
minimized in order to obtain the new trial
conformations that can be used to update the bank.
A new local energy-minimum conformation o is
compared with those in the bank to decide how
the bank should be updated. One first finds the
conformation A in the bank which is the closest to
the conformation o with the distance D(at,A). If
D(a,A) < Dy, the conformation a is considered
as being more or less similar to the conformation
A. In this case the conformation with the lower
energy from A and « is kept in the bank and the
other one is discarded. However, if D(a,,A) > Dey,
the conformation a is regarded as being distinct
from any other conformation in the bank.
Therefore, the conformation with the highest
energy among the bank conformations and the
conformation o is discarded and the rest are kept
in the bank.

The D, is reduced, and seeds are selected from
the bank conformations that are not used as seeds
yet, to generate new trial conformations. When all
the conformations in the bank are used as seeds,
one round of iteration is completed. We remove
the record of bank conformations having been

used as seeds, and start a new round of iteration.

All these steps are repeated for a given number of



iterations. After a preset number of iterations, we
conclude that our procedure has reached a
deadlock. When this happens, we enlarge the
by

conformations into the bank and repeat the whole

search  space adding more random

procedure until the stopping criterion is met.

The Energy Function

The The energy function used for the global
optimization is given by E = E,4, —100 Ny, when
the radius of gyration R, is below the radius
cutoff R, and E = R, otherwise. Here, E,q, is the
Lennard-Jones 6-12 van der Waals energy of the
CHARMM forcefield [46] introduced in order to
avoid the steric clashes. Ny, is the number of
hydrogen bonds between residues, which are at
least five residues apart in sequence since the
hydrogen bonding term favors alpha helices. The
hydrogen bond is assumed to exist when the
position of a hydrogen atom and an oxygen atom
is within 5 A. The relative weight 100 in the
_potential energy is totally arbitrary. We used the
value of radius cutoff Re, = (3N,/0.026m)"%/1.2
[27], but in a very early stage of the development
of our method, somewhat larger value of Ry, =

(3N4/0.026m)"” was used. .

Clustering and Ranking Conformations for
Structure Prediction

The CASP allows the predictors to submit up to
five models as predictions. Therefore, we have to
pick five distinct low-lying local minimum-
energy conformations. We cluster the bank
conformations, choose the best five clusters, and

pick up a representative conformation for each

cluster.
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The clusters are ordered with respect to the
energies of the representative conformations, and
top five clusters are chosen from the bottom,
regardless of their sizes. For each cluster, the
conformation with the lowest score is chosen as
the representative. This score is based on burial of
hydrophobic residues and exposure of hydrophilic
residues, where the reduced radius independent
Gaussian sphere (RRIGS) approximation was

used for exposed volume [47].

Results

To test the performance of PROFESY, we
applied it both to the prediction of the tertiary
structures of some proteins with known structures,
and to the blind prediction of some proteins from
the recent CASPS targets
(http://predictioncenter.linl.gov/casp5/). Since the
application to the CASP5 targets had to be
performed within a deadline, a relatively primitive
version of our protocol was applied, whereas for
the proteins with known structures we applied an -
Reut
(3Nseq/0.0261t)1/3/ 1.2 was used for proteins with
known structures and CASP5 target TO181, but
for CASPS targets T0129, T0161 and T0162, a

relatively large value of Ry = (3Nseq/0.0261r)”3

improved one. In particular,

was used, and the hydrogen bond term was absent

in the energy altogether.
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Figure 1. The superposition of backbone o-
carbon traces of PROFESY predictions (grey)
with those of the native structures (red), for
proteins with known structures. The results are
shown for (a) betanova, (b) 1fsd, (c) 1bdd, and (d)
1bk2.

Test results on proteins with known structures

We applied the PROFESY for the tertiary
structure prediction of proteins with known
structures for benchmark test, most of them being
in the PDB. They are the designed proteins
betanova (20 residues), 1fsd (28 residues), the
fragment B of staphylococcal protein A (PDB ID
1bdd, 46 residues), and A-Spectrin Sh3 Domain
D48G Mutant (PDB ID 1bk2, 57 residues).
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Figure 2. The maximum numbers of residues that
can be superposed with those of the native
structures (horizontal axis), along with the cutoffs
defining the superposition (vertical axis), for
CASPS target T0161 (PDB ID 1IMWS5). The blue
and cyan lines are the results for the model 1 and
the other four models predicted by PROFESY,
respectively, whereas the orange lines are the ones

predicted by other predictors.

The best predictions for betanova, 1fsd, 1bdd,
and 1bk2 have RMSDs of 3.1, 4.0, 4.4, and 2.3 A,
respectively. The backbone a-carbon traces of
these models are compared with those of the
native structures in Figure 1.

The CSA search was terminated after 47500,
49900, 46900, and 80500 conformations were
locally minimized, for betanova, 1fsd, 1bdd, and
1bk2, respectively. The energy used as the
selection criterion for the top 5 clusters are
hydrophobic burial and hydrophilic exposure
terms that are not used during the conformation

search, as mentioned in the Method section.

Blind Prediction on CASP5 Targets
In order to obtain the performance of ROFESY
in a blind test on completely unknown sequences,

we applied the PROFESY procedure on the



CASPS targets. There were five new fold targets,
which were T0129 (HIO187, H. influenzae, 182
residues), T0149 2 (domain 2 of yjiA, E.coli,
residues 203-318), T0161 (HI1480, H. influenzae,
156 residues), T0162_3 (domain 3 of 286-residue
protein F-actin capping protein alpha-1 subunit,
chicken, residues 114-281), and TO181
(Hypothetical protein YHRO87w, S. cerevisiae,
111 residues). Among them, the target T0161 is
the hardest to predict, as assessed by the CASP5
evaluators, with no homologues of any kind, even
in the sequence databases. For multi-domain
proteins we first have to split the protein into
separate domains and apply our method to each of
them, but we could not implement this procedure
in time for the CASP5. Therefore we applied our
method to the multi-domain protein T0162 as a
whole. Since 318-residue protein T0149 was too
large for computing its structure in time, we did
not attempt to predict its structure. Even though
we submitted the results only for the remaining
four new-fold targets, our method showed good
performance as a whole, as shown by the
the CASP5 meeting

evaluation at

(http://predictioncenter.llnl. gov/casp5/; group
name; 531).

In particular, the results for the target TO161 are
much better than other those of other predictors,
as shown by the graph in Figure 2, where the
maximum number of residues that can be
superposed with the native structure is plotted as a
function of the cutoff defining the superposition.
As shown in Figure 2, the model 1 is closest to
the native structure among the five models we

submitted. As can be seen from Figure 2, this

model rank as the third among all the models
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submitted by predictors, which is about one
thousand models. If only the first models are
compared, our model is the  best
(http://predictioncenter.llnl.gov/casp5/pubResultS

/CASP_BROWSER/DATA html/3d_T0161.html).
The native structure has short beta strands
(residues 15-18, 115, 116, 119, 120, 123-128,
146-148) whereas our prediction consists only of
alpha helices. The result for T0162 is also one of
the best results. The result for the target T0129 is
not as good, and we think the reason is that for
this target, we also added the SASA solvation
term [48] to the CHARMM forcefield [46] in the
TINKER package (http://dasher.wustl.edu/tinker/).
Since a protein does not have side-chains in our
method, naively adding the solvation term to our
model had a disastrous effect of exposing
hydrophilic backbone atoms to the solvent. We
realized this fact after submitting the predictions
for TO129 and did not use the solvation terms for
other targets. The results for TO181 are not as
good as expected, although we applied improved
version of our protocol. In fact, most of the bank
conformations are similar after the CSA search
terminates. We think that, since the energy terms
we used during the CSA runs are incomplete in
that it does not incorporate the effect of
hydrophobic burial and hydrophilic exposure, the

most of the good conformations are removed in

the early stages of the CSA runs.

Discussions

In this work, we have introduced PROFESY,
which is a novel method for prediction of protein
tertiary structure based on pattern matching and

fragment assembly. We applied a primitive



version of this method to the CASP5 new-fold
targets for blind tests, and also slightly improved
version to some proteins with known structures.
Although the method is in its early stage of
development, the results show excellent
performances. The method is still incomplete and
there is much room for improvements.

First of all, due to the fact that our model does
not have the side chains, we cannot use the all-
atom salvation term directly, and we have to
incorporate solvation effect indirectly by using
the term favoring the burial of hydrophobic
residues and exposure and hydrophilic ones. We
did not implement this term directly in the CSA
procedure, but used them only in the final stage
where we chose best five conformations among
the final bank conformations. As can be shown
from the poor performance for target T0181, this
effect in that the

can have disastrous

conformations which are low in true energy get

removed from the bank during the CSA procedure.

We will have to incorporate this indirect solvation
term into the energy used in the CSA.

Secondly, the relative weights of various energy
terms are totally arbitrary. We have to optimize
the values of these parameters using the proteins
with known structures, in such a way our method
predicts the correct native structure for as many
proteins as possible, using the optimized
parameters.

These improvements and the tests results will be

reported elsewhere.
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