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Abstract

The advent of microarray technologies gives an opportunity to moni tor the expression of ten
thousands of genes, simultaneously. Such microarray data can be deteriorated by experiment al errors and
image artifacts, which generate non -negligible outliers that are estimated by 15% of typical microarray
data. Thus, it is an important issue to detect and correct the se faulty probes prior to high-level data
analysis such as classification or clustering. In this paper, we propose a systematic procedure for the
detection of faulty probes and its proper correction in Genechip array based on multivariate statistical
approaches. Principal component analysis (PCA), one of the most widely used multivariate statistical
approaches, has been applied to construct a statistical correlation model with 20 pairs of probes for each
gene. And, the faulty probes are identified by inspecting the squared prediction error (SPE) of each probe
from the PCA model. Then, the outlying probes are reconstructed by the iterative optimization approach
minimizing SPE. We used the public data presented from the gene chip project of human fibroblast cell .
Through the application study, the proposed approach showed good performance for probe correction

without removing faulty probes, which may be desirable in the viewpoint of the maximum use of data

information.

Introduction many different areas such as clinical and
The appearance of cDNA and oligonucleotide pharmaceutical research. And also, these array

arrays has made it possible to monitor the techniques may be used to analyze the clinical

thousands of genes in the parallel. The analysis of outcome and identify its related ‘ genes by

such technologies brings about a revolution in comparing gene expression in cured patients with

fatal ones. Although it is a promising tool for
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complexity of the data produced by these

technologies is a major obstacle to analyze these
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kinds of data.
In general, data analysis involved in microarray
technology can be roughly divided into two
categories such as low-level and high-level data
analysis. The low-level data analysis refers to a
standardization of the microarray data performed
before entering the substantial analysis such as a
feature extraction, contamination filtering and a
data normalization, etc. Since the high-level data
analysis can be performed only after the low-level
analysis is accomplished well, many researchers
on low-level analysis are conducted and the low-
level analysis can be treated as a fundamental
technology. The high-level data analysis is
already established and well-known. It refers to
idéntifying disease  related genes and
[1]. As

performance of high-level analysis is dependent

unrecognized tumor subtypes the
on »the results of low-level data analysis, the
developed countries invest human resource and
money tremendously in developing the
fundamental technologies of the low-level data
analysis. ,

Affymetrix GeneChip® arrays are most popular
oligonucleotide array and consist of probe sets
indicating unique genes. It is hundred thousands
of  probes composed of  20~25mer
oligonucleotides are directly synthesized by a
base on the array in different forms. Each probe
set contains 20 probe pairs, so it has high
reproducibility. The probe pair consists of perfect
match (PM) and mismatch (MM). The sequence
of PM and MM are the same except for one sing
nucleotide difference at the middle of the
sequence [2].

The data obtained form the oligonucleotide
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microarray is huge, and therefore, computer aided
and statistical analysis is required. Most of
microarray data "analysis are performed at the
gene expression level rather than the probe
expression level, and as the oligonucleotide chip
represents transcription information of one gene
by probé expression data of about 20 probe pairs,
so that it is complicated to analyze because probe
data of about 20 pairs have to be simplified to one
value through a specific process. A gene
expression value can be calculated by the proper
heuristic or model based methods using the
corresponding probe data [2-6].

The oligonucleotide chip experiment requires
very experienced technique, and exposed to many
error or noise through whole process. It is very
important to detect the faulty probe és well as to
correct proper value based on a statistical
background because the number of outlier can be
estimated by 15% of typical microarray data [2].
It can be occurred in the following case: i) a
sample itself is contaminated, ii) the spot is
spoiled, iii) defects in experimental equipment
and process, iv) hybridization is not completed
correct, v) cross-hybridization occurs and so forth
[31-

The measurement errors affect a specific probe
to get an abnormal expression value, and
therefore, the probe shows a different pattern
from the expression pattern of other normal
probes. The sample having an abnormal probe
expression value is called “outlier” in- the
oligonucleotide chip.

Therefore, it is a critical issue to detect and

correct the faulty probes before high level data

analysis was performed. Despite the importance



of low-level data analysis, few research efforts
have been devoted to detect the outlier of
oligonucleotide microarray data [1]. Li and Wong
[4] proposed a statistical model for the probe-
level data and they can detect the outlier based on
this model.

The aim of this paper is to identify the faulty
probes and correct them based on multivariate
statistical approach. In order to identify the
samples including the genes deteriorated by faulty
probes, we used a confirmatory clustering using
the supervised class information because we knew
the exact class in this data. And then, we used
squared error prediction (SPE) method for
detecting the gene including faulty’ probes. After
identifying probes, we reconstruct the faulty
probes based on measurement correlation between
20 pair probe intensities for each gene in

oligonucleotide microarray data.

Methods

The methodology for correcting chip data is
largely consists of the five steps. First, a statistical
significance of the chip data should be identified.

The status of data corrosion is monitored and the

possibility of the correction is checked in this step.

Second, if the raw data is considered as one to be
corrected in the first step, the correcting models
are constructed. An individual model is generated
to each gene expressed with the assembled
intensities of probes according to the number of
arrays. Then, a corrupted gene and the faulty
probes in the gene are detected. After the detected
intensities are corrected using the PCA models,
validating the results terminates the correction

processing.
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Theoretical background
Principal Component Analysis

Principal Component Analysis (PCA) is an
effective tool in multivariable data analysis. It
transforms the high-dimensional problems into
lower dimensional problems with the minimum
loss of information. This method is particularly
useful in analyzing the large set of correlated data.
It transforms correlated variables into new
uncorrelated orthogonal variables, called principal

(PCs). Each PC
of

linear

The

components is a

combination original  variables.

coefficients of each linear combination are
obtained from the corresponding eigenvector of
the covariance matrix of original variables [10].

Let xeR™ denote a array vector of m variable.
Assuming there are n samples for each variable, a
data matrix XeR"™ is composed with each row
representing a array. X can be represented by the
product of a loading matrix P which shows the
influence of variables and a score matrix T that
summarizes the X variables. E is a residual matrix

representing the deviations between the original

values and the projections:

X=X+E 0

n l
X=TP" =3 tp/ @)

where ¢ and p are the score and loading vector,

respectively, [ is the number of principal

components.

Then, a particular array vector x can be projected
into the principal component subspace (S,), which
is spanned by the first / loading vectors, and the
residual space (S,), respectively. The projection of
x on the subspace

principal component
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Figure 1. Model data structwe for correction in
oligonucleotide microarray. (a) is three dimensional
structure of oligonucleotide data. (b) is two
dimensional structure data for building the model in
each gene. ’

is represented by

x=PP'x=Cx 3)
The projection of x on the residual space is
x=(I-C)x “)

Since S, and S, are orthogonal, two projected

amounts satisfy
~T ~
xx=0 &)

In order to determine the number of PCs, we
used the variance of reconstruction error (VRE)
[6]. The VRE can be decomposed into a portion
in the principal component subspace and a portion
in ‘the residual subspace. As a result, the VRE
always has a minimum which points to the

optimal number of PCs [11].

SPE
SPE represents the squared perpendicular
distance between a new multivariate observation

and the corresponding reconstructed observation
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obtained by removing from the principal subspace.

It offers way to test whether the correlations

between measurements are valid or not. For ith

array,
SPE; =¥ (x, -5, (6)
=1

Jackson [7] developed a statistical significance
test for the residuals obtained from Eq. (6). Such a
test suggests that the correlation among variables

is not valid if

SPE 2 cl(@) (M
where cl(e) is the confidence limit for the 1-a

percentile in a normal distribution [11].

Clustering

Clustering is a technique used for combining
observation into groups according to grouping
objectives. It can provide informal information for
identifying outliers or tumor subtypes. Many
researchers have been implemented clustering
techniques to extract useful information from
microarray data [12, 13]. There are various
methods for partitioning data into meaningful
sub-groups. In this study, we mainly used the
hierarchical clustering methods because the
graphical visualization of these methods, called
recognize

dendrogram, enables to outlying

samples easily.

Formation of data matrix for correcting the
chip data
have three-

Oligonucleotide  chip data

dimensional I xJx K structure: array, gene and

probe intensities in gene as Shown Figure 1(a).
Data matrix for each gene is generally composed

of the intensities for 40 probes in all arrays, which
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Figure 2. Data Structure of human fibroblast

are str'ongly correlated, as shown Fig. 1(b). The
correction model is based on the correlation
structure of probes in each gene. Data matrix for
the correction modeling for an individual gene
constructed in the JOK matrix for each gene.
Faulty probe intensities can be identified as those

violating correlation between probes in each gene.

Finding out the array to be corrected
In general, microarray data include the
considerable biased information considerable due
to ambiguity in image processing, instrumental
trouble, and so on. The target arrays to be
corrected are detected as ones violating ones to
our objective. PCA has been applied to
visualizing the arrays composed of a large number
of genes and clustering the arrays to represent
similarity of those quantitatively. The score plot
from PCA and the dendrogram from clustering
are efficient for representing shows array
similarities groups, trends, outliersand so on.
Two types of the outliersare divided according
to the characteristics of outliers in a group or
among groups. Type I isassigned to the outlying
samples far from the normal ones that are
identified by the statistical confidence region in
PC space. Type II is the case that an arrayis

assigned as the other cluster to te not done. Both
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Figure 3. Two hierarchical clustering for outliels
detection

cases could make a bad effect on analysis of gene
expression data. Two criteria are welltknown to
find out the array to be corrected. One is to
investigate whether the arrays are deviated from a
statistical boundary of arrayto-array variations. A
statistical boundary is constructed based on the
Hotelling 77 statistics [14]. The Hotelling 7° for
array i, based on4 PCs is
A 42
=Yk (®)
a=14,

where 4, is the variance of e th score. T2

value indicates the Mahalanobis distance of a
point from origin in the PC space. T* x N (N-1) /
A (N %-1) is F distributed with 4 and N-4 degrees
of freedom where N is the number of arrays in the
PCA model data and4 is the number of PC in the
model. Hence, if

T?> A(N*-1)/ N(N— 4x E(p=0.05  (9)
then the array i is outside the 95% confidence
region of the model. The F. (»p=0.05) is the
critical value of F distribution with 0.05 as p
value. The other is to detect the misclassified
arrays in the predefined clusters in the case of
utilizing the supervised information such as tumor

type, the extent of disease, and so on.
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Figure 4. The probe expression level of the raw data of
ribosomal protein L8 The upper plot shows raw data
before correction of array7. The lower plot shows raw
data after correction of array7.

Construction of PCA models using the
intensities of probes in genes

The covariance structure of probes in a gene
can be identified using data matrix in Figure 1(b).
Faulty probes can be detected readily by
comparing the covariance structure of probes . In
order to correct the faulty probes, the PCA models
are constructed using the data without the
outlying arrays detected in the previous step.
From PCA and clustering analysis, if the arrays
are not classified into various groups, it prefers to
construct a model with total data except outliers.
If the arrays are clearly classified into various
groups, it prefers to construct a model with

selected group data.

Detecting gene expressions including the faulty

probes using SPE

SPE is applied for detection of abnormal gene
expressions due to faulty probe intensities. SPE is
the index that detects a correlation breakdown. In
other words, SPE index goes out of the
confidence level as described in Eq. (7) when a
array contains the probe with abnormal intensity.
In general, the 15 % of expressed genes are
known as contaminant information [7]. This index
can detect the contaminant expressions based on
strong correlation between probe intensities. A
contribution plot approach based on SPE has been
used to identify the faulty probes in a gene [14,
15]. Comparing the relative contribution of the

probe intensities in SPE when a faulty array is

detected identifies the faulty probes.

Correction of the faulty probe intensities and
its validation

From the highly contributed probe to the large
residual, one may estimate the jth faulty probe
intensity from the orthogonal intensity using Eq.
(3) [16] . In this approach, the probe is used to
reconstruct itself. To eliminate the effect the
faulty probe, we used the alternative approach
suggested by Dunia et al. However we find the jth
predicted probe intensity by iterating

_ 1 T (VT 10 =gl oold T
"=,z + [x—i0x+i] =[x, " xle (10)

until it converges to a value z ;. Here

C=PPT=[cl ¢ c3---cm] an
and
CiT =le; ¢y v il (12)

and x7 represents a row vector composed of
probe intensities of the model data matrix and the
subscripts —i, +i denote a vector formed by the
first ;-1 and the last m-;i elements of the original

vector, respectively.
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Figure 5. Score and loading plot for probe validation in
Ribosomal protein L8

Optimization approach was implemented by
Wise and Ricker (1991) for a set of corrected
intensities. For the reconstruction of the ith

variable, the optimization procedure reduces to

2
e (13)

minf,

where X isidentical to x except for the ith entry,

z; . Since I-C is positive semi-definite, the

derivative of the objective function with respect to
z; leads to a necessary condition for a minimum:

giT(I - C)fi=[xfi z" x+Ti] (& —c)=0

H

new old
i Zi T2

i

From equation (10), if ¢,=

This expression leads to the following solutions.

z,=[x", 0 x[)e /(-c;) (14)

The corrected probe data should be eval uated

from posterior analysis using supervised
information.
The asymptotic value for z; is
[x-T . 0 x+T i ] ¢
zZ. =
i -, (15)
Results

Data description
We used -the public data presented from the

gene chip project of human fibroblast cell using

Affymetrix oligonucleotide Genechip ®
expression array in the Ohio State University [ 17].
The experimental data involves in the three

groups of human fibroblast cells, with six
replicate HuGeneF] arrays in each group. The
three groups are serum-starved samples (A),
serum stimulated samples(C), and a 50:50 mixture
of starved/stimulated samples (B). Consequently,
the true expression for each gene in array B is the
average of the same one in array A and C. Each
line of experiment data contains PM and MM data
for a probe set. Fig.2 shows the data structure to
be identified.

Detection of outlying arrays
The hierarchical

performed using 6799 each genes including 40

clustering of samples is

probes. 6799 genes were categorized in terms of
their temporal response to growth factor se rum in
fibroblast cells by using a standard correlation
coefficient to define the distance between each
pair of genes. Addition of serum induced

proliferation such as absence of serum induces a
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Figure 6. SPE index for array in of ribosomal protein
L8. The upper plot shows SPE before correction of
array7. The lower plot shows SPE after correction of
array7

non-dividing state termed G, and low metabolic
activity.

The target arrays to be corrected are detected a
using the popular hierarchical clustering. Single
linkage

clustering methods were employed. Fig . 3 shows

linkage and average hierarchical
that the array 7 and 14 are far away from the other

normal samples.

Detection of the genes including faulty probes
inaarray”

" In the previous section we defined the outlying
arrays that have probe faults. The faulty probes in
a specific gene can be identified known as

systematic errors in the arrays u sing PCA model
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of probe data for each gene. Using the SPE index
based on the all array except to the array 7 from
SPE index, 1350 genes among total 6799 genes
were identified as ones including faulty probe

data by the statistical significant test.

As shown in Fig. 4, the probe intensity pattern of
Ribosomal protein L8 the array 7 is different from

those in the other arrays. The score and loading
plots, from PCA the model are shown in Fig. 5. In
the PC model space, the score plot describes the
pattern of the uncorrelated new variables in the
first two dimensions spanned by the first two PCs.

Because the array 5 of score value is out of
control limit, the array 7 is considered outliers.
The loading plot describes which probes mainly

affect the outlying array. The array 7 is largely
affected by probe 4, probe 5, and probe 6, which

can be identified as the faulty probes. The PC2
axis of loading plot helps ones to identify the

faulty probes. The expression levels of probe 4, 5

and 6 are lower than those at the other arrays.
This unusual phenomenon could result from the
possibility _of cross hybridization, failure of
normal hybridization, and so on. In Fig. 6(a), the
SPE plot from the PCA model for gene L8 shows
that the array 7 is located on the outside the
statistical limit which is a criterion whether the

correlation structure of probes.

Correction of faulty probe intensities in a
specified gene and validation
Correcting faulty probes using correlation
structure refreshes the corrupted genes in the
previous step. The SPE value before and after
correction of array 7 are shown in Fig. 8 . Once
the faulty probes are reconstructed, a significant
decrease in the residual is expected. After the
are corrected, the

faulty probe intensities
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Figure 7. Two hierarchical clustering after correction of
fault probe

correction performance can be checked using the

hierarchical  clustering method  previously

employed to detect the outliers. Fig. 7 represents
the

clustering methods with corrected data.

two different

By

clustering results using
comparing Fig. 5 with Fig. 7, the outlying array 7
and 14 are rearranged into the three groups , which
show that the proposed correction algorism was

performed on the oligonucleotide microarray data.

Conclusions

We have proposed a multivariate statistical
approach for the faulty probe detection and its
correction algorithm on the oligonucleotide
microarray. The target arrays to be corrected can
be detected using the popular hierarchical
clustering with the cluster information. The basic
idea for the faulty probe detection and correction
is statistical correlation modeling and model
based reconstruction skill. The proposed method
shows satisfactory results for detecting faulty
probes and reconstructing them. Also, we need
not discard any probe intensity value, which gives
a chance to use maximum information of
microarray data. Furthermore, this approach may
be extended to estimate missing values in

microarray data.
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