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Abstract

A significant portion (about 8% in human genome) of mammalian mRNA sequences contains AU

(Adenine and Uracil) rich elements or AREs at their 3” untranslated regions (UTR). These mRNA

sequences are usually stable. ARE motifs are assorted into three classes. The importance of AREs in

biology is that they make certain mRNA unstable. We analyzed the occurrences of AREs and Alu, and

propose a possible mechanism on how human mRNA could acquire and keep A REs at its 3° UTR

originated from Alu repeats .

Interspersed in the human genome, Alu repeats occupy 5% of the 3 UTR of mRNA sequences.

Alu has poly-adenine (poly-A) regions at the end that lead to poly -thymine (poly-T) regions at the end of

its complementary Alu. It has been discovered that AREs are present at the poly -T regions. In the all

ARE’s classes, 27-40% of ARE repeats were found in the poly -T region of Alu with mismatch allowed
within 10% of ARE ’s length from the 3’ UTRs of the NCBI’s reference m RNA sequence database.

We report that Alu, which has been reported as a junk DNA element, is a source of AREs. We

found that one third of AREs were derived from the poly -T regions of the complementary Alu.

Introduction

The half life of eukaryotic mRNA shows over 10
times difference [1,2]. This is partly because AU -
rich clements (ARE), a cis-acting regulation
sequence that are found in mRNA , have effect on

the structure of mRNA and degradation factor
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proteins [3,4,33]. ARE is located at the end of
mRNA and has an effect of making poly -adenine
(Poly-A) shorter (deadenylation). When the poly-
A becomes shorter, the interaction between PABP

(Poly-A binding protein) that binds to poly-A at
3’of mRNA and cap structure at 5° becomes weak.
Once this interaction is broken, mRNA can be
easily degraded by losing its stable structure [5 -
9,34,38]. ARE research is important many ways



especially as in proto-oncogenes that have AREs
in their mRNA. Mutations in the proto-oncogenes
convert them to oncogenes and can cause cancers.
It is known that half life of the proto-oncogenes’
mRNA is shorter than usual mRNA because of
AREs [14-21,39]. Growth factors [22] and
vascular endothelial factors {23] are also known
to contain AREs.

AU-rich elements (ARE) is usually bound by
mRNA degradation proteins. However, mRNA
stabilization proteins can also bind ARE with no

clear knowledge on the mechanism [13,40].

Table 1. The descriptions of AU-rich elements’

classes
Description
Class 1 Scattered AUUUA in U stretches
ClassII | (AUUUMA, (2<n<5)
Class 111 Non-AUUUA, U stretch

AU-rich elements (ARE) has a nonamer
sequence such as UUAUUUAUU as a basic
working element. Usually, higher number of
AUUUA repeat causes faster degradation of
mRNA. AREs can be classified into three types
based on their structure (Tabl‘e 1) [3,10-12,42].

Class I has more than one AUUUA element at
poly-uracil region. For example,
UUUAUUUAUUUUUUAUUUAUUU  contains
two AUUUA in a poly-U sequence [3]. Class II
contains repeated AUUUA element. For example,
(AUUUA (n=5)
AUUUAUUUAUUUAUUUAUUUA are such

or

[3,12]. Depending on the size of n, they can be
subclassified. Class III is a non-AUUUA type
ARE. They could contain poly-uracil. Also, non-
AUUUA clements are found in this class [3,42).
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Among the three, class II is best known [42]. The
increased number of AUUU in Class II increases
the efficiency in mRNA degradation [10].

Unlike ARE, Alu is regarded as a kind of junk
DNA. Alu is transcribed by RNA polymerase IIL
The transcribed Alu mRNA are incorporated into
DNA and the copy number rises over time [24,25].
Alu mRNA contains poly-A that resembles
common mMRNA and this poly-A plays an
important role in the expansion of Alu in human
genome [36, 37]. The length of Alu is about
300bp. It occupies 6-13% of human genome [31].
About 5% of human cDNA has Alu and the
majority is found at 3’UTR [32]. Alu has three
types depending on their age. They are Alu J, Alu
S, and Alu Y. Alu J appeared 80 million years ago
(mya). Alu S is younger and appeared around 60
mya. Alu Y is recent and is predicted to have
appeared around 20,000 to 40,000 years ago.
These three types can be subclassified. Alu S has
as many as 12 subfamilies [26]. Alu Y is still
active in the human genome [27-30]. When Alu
mRNA is inserted, Target Site Duplication (TSD)
is created. As a result, there are repeated sequence
of 7-20bp bases at both sides of Alu [35). Initially,
Alu was regarded to have no function. However,
recently, their function has been suggested. If
situated at the upstream of genes, transcript
factors (TF) can be bound resulting in an
amplification of transcription [29]. Our group
suggested the link between Alu at 3° UTR and
pseudogenes [43]. However, there is no evidence
for the association between ARE and 3’UTR Alu.

Here, we report a discovery of ARE that
affects the half life of mRNA from the 3° UTR
Alu sequences. As in figure 1A, when Alu is



inserted to the complementary strand of DNA
coding region, the poly-A at the end of Alu
becomes poly-thymine (T). If this gene is
transcribed the mRNA will contain poly-U at
3’UTR. This poly-U is one of the ARE types
(class III). We discovered ARE class II and I also
have a link with Alu as well as ARE class III. We
suggest this as a new function of 3’UTR Alu.

Figure 1. The schematic diagram of poly-thymine
(poly-T) generation by Alu. (A) Alu contains
poly-adenine (poly-A) region at the end. It is
shown as ‘aaaaaaaa’. The poly-A of Alu at anti-
sense becomes poly-T (complement of poly-A) at
the sense strand on DNA. It is shown as ‘tttetttt’.
(B) mRNA now contains poly-uracile (poly-U)
region after the transcription of poly-T region. (C)
AU-rich elements are found in this poly- U region

in (B).

A Al complement
5
—_Codingregion [ Jrutn] Sense strand
; sazacazs Alu = Antisense strand
8 Coding region
mRNA
C

EJUUAUUUAUUUAUUUAUU| Au complement

Materials and Methods

Human 3’ untraslated region

We used RefSeq database from National Center
for Biotechnology Information (NCBI) for human
3’UTR sequences [41]. We extracted 3’ UTR of
CDS (coding sequence) from all the annotated
mRNA sequence (mMRNA_Prot, 2004.9.13). The
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number of 3’'UTR was 21,121 and the average
length was 1.6kbp.

AU-rich elements (ARE) pattern searching

AREs were searched for in the 3’UTR for all
three classes. We used (AUUUA (n=5, 21bp)
pattern for ARE class 1T [12]. In table 1, class I is
defined to have 2-5 repeats of AUUU. We used
the longest repeat size only for achieving high
accuracy. We used 30bp for Class I and III as the
length definition for these classes are not accurate.
They are usually referred to as long poly-U [3,
42]. 30bp is the minimum length observed in

experiments [44].

Alu sequence detection

RepeatMasker program is used for finding Alu. It
is a common program for finding repeats [45].
After finding Alu sequences using RepeatMasker
at 3’UTR, for each Alu, we recorded the position

information for the next step analysis.

Comparison between two search results

We compared the positions of 3’'UTR Alu and
ARE. If ARE is discovered within ARE, we used
TSD (Target Site Duplication) information. For
example, if Alu is found between 100- 400bp in
3’UTR and ARE between 90-120bp, we search
for TSD up- and downstream of the region. If
TSD is found, ARE is found to be inside of Alu

region.

Statistical analysis of the search results.
To validate the significance of the searches, we
calculated the random chance of the ARE and Alu

overlap.



Hypothesis

HO: ARE occurs in human 3’UTR independently
- from Alu.

Validation

The average length of 3° UTR of 21,121 human
sequences was 1,600 bp. Within the large
sequence of 21,121 X 1,600 bp, we generated
1504 Alu (300 bp) and 329 ARE (30bp) following
a uniform distribution. 1504 and 329 are the
actual numbers of Alu and ARE found by our
method. This random sequence generation is done
1,000 times with 95% significance threshold.

Test Result

The significance range at 5% error range was 0.3-
2.7% (Figure 2) for randomness. Therefore, our
search result of 27-40% is out of the likelihood
for random overlaps of Alu and ARE. Therefore,
the hypothesis HO is rejected.

Figure 2. Empirical confidence interval of ARE’s
ratio found in Alu. X-axis was ARE’s ratio found
in Alu, and Y-axis was the number of ARE’s ratio

found in Alu among 1,000 repeats.

among 1000 repeats

The number of ARE's ratio found in Aty T

0.3% 0.6% 0.9% 1.2% 1.5% 1.8% 2.1% 2.4% 2.7%
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|

Results

About 30% of ARE were found in and
probably originated from Alu.

The result from the method is shown in table 2.

In ARE class I, out of the total 81 AREs, 23 of
them were found to be in Alu region. Class II had
15 out of total 55 and the class III had 78 found
by our method out of 193. Out of 329 ARE
located in 3’UTR from the 21,121 mRNA, over
35% of them were within 1504 Alu sequences. As
the random chance of ARE being located within
Alu was from 0.3% to 2.7% (Statistical analysis
in the Method) this result is highly significant and
3’ UTR ARE are significantly associated with Alu.

Table 2. ARE ratio found in Alu by ARE’
classes. (A) column is the number of ARE found
in Alu. (B) column is all ARE found in the 3’'UTR
of 21,121 human mRNA sequences. (C) column

ARE found | all ARE in | Ratio®
in Alu® all 3°UTR?
Class [ 23 81 28%
Class II 15 55 27%
Class III 78 193 40%
SUM 116 329 35%

is ARE ratio found in Alu (A/B).

GU- or CU- rich elements were also found in
Alu.

AUUUA repeats is not the only sequence
pattern for ARE. Non-AUUUA ARE:s that contain
repeats such as GUUUG can also be ARE. It was

" discovered that GUUUG repeats function as ARE

80

in c-jun’s 3’UTR [42]. In addition to GUUUG
repeats, CUUUC repeats also function as ARE
even though mRNA stabilizing factors bind to it
[40]. In general, theses two cases are classified
into the class III ARE. Qur search showed that

GU or CU repeats were also found in Alu. We




found that GU- or CU- rich elements in place of
adenine in the ARE class II were most likely to
have occurred through adenine bases having been
replaced with guanine cytosine (i.e.

(GUUWU)nG (n=5) or (CUUU)RC (n=5)).

These G and C base types were also found to

or

be associated with Alu in this study. Figure 3
shows the number and ratio of GU- and CU-rich
elements associated with Alu. Out of 145 total
GU-rich elements, 39 were found with Alu. CU-
rich elements had 31 out of 96. The overall ratio
of occurrence with Alu sequence is in between

27-32% which is similar to other AREs (Table 2).

Figure 3. GU- or CU- rich elements found in Alu.

X-axis was each GU-, CU-, and AU-rich elements.

AU-rich elements were class II type in this figure.
Two Y-axes were the number of each element
(left) and ARE’s ratio found in between Alu and
all mRNA.
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120 + 25%
100
4 20%
80 |
1 15%
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40 | 10%
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GU-rich CU-rich AU-rich
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The number of ARE found in Alu sequence
mzmm The number of the all ARE of mRNA’s 3' UTR
—&— The detection ratio found in Alu

frequently in Alu than other repeats such as
AU or AUUUUU repeats. '

We tested whether insertion/substitution at
every 4bp (AUUU repeats) was more frequently
found than other base pairs (AU, AUU, AUUUU
or AUUUUU repeats) in 3’UTR Alu. The result
can be dependent on the full length of repeats. For
example, (AUUUUU)3A occurred 109 times, and
(AUUUUU)4A was 31 times in all the 3’°UTR
sequences. However, the two ratios found in Alu
were similar; 16 out of 109 (AUUUUU)3A (15%)
and 5 out of 31 (AUUUUU)4A (16%) were found
in Alu. We tested all the repeats of AU, AUU,
AUUU, AUUUU and AUUUUU that are closest
to 21bp. Therefore, each repeat element had
difference of 0-2bp.

Figure 4. The ARE found in Alu by changing the
number of uracil repeat between the two flanking
adenines of AUUUA motif. The full length of

each repeat had the minimum size of 21bp.

The number of ARE in the all 3'UTR of mRNA)
e=mpummThe detection ratio of ARE found in Alu
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1 20%
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AUUU or AUUUU repeats were found more
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Interestingly, among the repeat elements, we

found that ARE class 1II (AUUU)5A and




(AUUUU)A were highly associated with Alu
while other repeats showed less than 15%
occurrences with Alu.

Discussion

The function of Alu has not been clearly known

and regarded as the vestige of molecular evolution.

Recently, it has been reported that it affects the
transcription and splicing at the upstream gene
and intron regions. However, no critical biological
function is known for the Alu in downstream
3’UTR.

In this study, we discovered for the first time
that Alu inserted at the 3° UTR is associated and
probably the source of ARE that regulates the
degradation of mRNA. We discovered that around
one third of ARE were statistically significantly
associated with and probably originated from Alu.
We
substituted regularly in poly-U (Eigure 4). Out of

found that adenines were inserted or
the institutional/substitutional range of 4-5bp (the
repeats of AUUU or AUUUU), the occurrencé of
ARE in Alu region decreases in the repeats of AU,
AUU, or AUUUUU. We suggest that there is a
molecular mechanism that determines the regular
interval of 4-5bp. We also examined non-adenine
replacement of uracil (U) and they had the same
regular 3-5 bp replacement (Figure 3). The order
of bases is guanine > cytosine > adenine.
Regardless of the base types, around 30% of such
sequence patterns were found in Alu region
indicating the Alu origin or association with Alu.

In conclusion, Alu’s poly-U alone can affect
the  degradation of mRNA, regular
insertion/substitution of adenine in every 3bp
seemed to have raised the efficiency of ARE. As

other bases showed similar patterns, we suggest

82

that the type of base is not the most critical
element in mRNA degradation. This study
contributes significantly to the regulation of
mRNA degradation by ARE and suggest a new
function of Alu in human and possibly other high

mammalian genomes.
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