Opposing Functions of Calcineurin and CaMKII Regulate G-Protein Signaling in Egg-Laying Behavior of *C. elegans*

Jaya Bandyopadhyay^{1,*}, Jiyeon Lee^{1,*}, Jungsoo Lee^{1,*}, Jin Il Lee¹, Jae-Ran Yu², Changhoon Jee¹, Jeong-Hoon Cho¹, Sunki Jung¹, Myon Hee Lee³, Sonia Zannoni⁴, Andrew Singson⁴, Do Han Kim¹, Hyeon-Sook Koo³, and Joohong Ahnn^{1,**}

¹Dept. of Life Science, Kwangju Institute of Sci. & Tech.

²Dept. of Parasitology, College of Medicine, Kon-Kuk Univ.

³Dept. of Biochemistry, College of Science, Yonsei Univ.

⁴Waksman Institute, Rutgers University

ABSTRACT

Calcineurin is a Ca^{2^+} -calmodulin-dependent serine/threonine protein phosphatase that has been implicated in various signaling pathways. Here we report the identification and characterization of calcineurin genes in *C. elegans* (*cna-1* and *cnb-1*) which share high homology with *Drosophila* and mammalian calcineurin genes. *C. elegans* calcineurin binds calcium and functions as a heterodimeric protein phosphatase establishing its biochemical conservation in the nematode. Calcineurin is expressed in hypodermal seam cells, body-wall muscle, vulva muscle, neuronal cells, and in sperm and the spermatheca. *cnb-1* mutants showed pleiotropic defects including lethargic movement and delayed egg-laying. Interestingly, these characteristic defects resembled phenotypes observed in gain-of-function mutants of $unc-43/Ca^{2^+}$ -calmodulin-dependent protein kinase II (CaMKII) and $goa-1/G_0$ -protein α -subunit. Double mutants of cnb-1 and unc-43(gf) displayed a synergistic severity of movement and egg-laying defects, suggesting that calcineurin has an antagonistic role in CaMKII-regulated G-protein-coupled phosphorylation signaling pathways in *C. elegans*.

Key words: *cnb-1*, PP2B, deletion mutant, *unc-43*, CaMKII