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Abstract

This study suggests a general paradigm enhancing genetic
mutability. Mutability among heterogeneous members in a
genetic population has been a major problem in application
of genetic programming to diverse business problems. This
suggested paradigm is implemented to developing new
methods from existing methods. Within the evolutionary
approach taken to designing new methods, a general
representation scheme of the genetic programming
framework, called a kernel, is introduced. The kernel is
derived from the literature of algorithms and heuristics for
combinatorial optimization problems. The commonality
and differences among these methods have been identified
and again combined by following the genetic inheritance
merging them. The kernel was tested for selected methods
in combinatorial optimization. It not only duplicates the
methods in the literature, it also confirms that each of the
possible solutions from the genetic mutation is in a valid
form, a running program. This evolutionary method
suggests diverse hybrid methods in the form of complete
programs through evolutionary processes. It finally
summarizes its findings from genetic simulation with
insight.
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1. Introduction

This study introduces the design and implementation of an
evolutionary approach to designing new methods. It first
analyzes the methods in the literature of combinatorial
optimization. The main methods, along with their hybrid
forms and deviations, are introduced. The methods in the
literature are classified into several groups by their natures,
such as the behavior of the search. The common and
unique features of each method are studied. Sets of rules
and steps to combine all these methods are considered.
A unifying method combining all these methods is
suggested by following the rules and steps we suggest in
this study. The approaches to developing new methods
are explained together with a classification of them by the
nature of their approaches. The theory of genetic

programming is the main methodology in this study. The
diverse representation schemes of the evolutionary
approach are explained. The application areas of genetic
algorithms and genetic programming are also briefly
introduced. A problem instance to evaluate the
methodology is defined in relation to the kernel. The
kernel is described in pseudo code form to indicate how it is
implemented as a computer program. Function sets, the
five basic building blocks of the kernel, are explained with
their parameter values. This study also gives a general
description of these functions and how they work inside the
genetic frameworks.

2. Efforts in Designing New Methods in the
Literature ‘

There have been many approaches taken in designing new
methods in combinatorial optimization since the 1960’s.
These approaches can be classified into three directions:
inventing completely new methods, adding new features
into the existing methods, and combining more than one
method together.

The first group of approaches above can be divided into
four categories (Morton and Pentico 1993): 1) manual
approaches, 2) computer simulation approaches, 3)
mathematical approaches, and 4) heuristics. = Manual
approaches depend on human problem solving ability.
Simulation approaches have been studied extensively only
after the advent of computers. Mathematical approaches
are gaining in effectiveness with the continued development
of computing hardware. Branch & bound, dynamic
programming, and integer programming, are in this group.
The heuristic group includes neighborhood search,
simulated annealing, tabu search, genetic algorithms, and
neural networks.

The second group, adding new features into existing
methods consists of methods to improve the performance of
the methods in the first group. Simulated annealing and
tabu search are examples. Branch & bound has been
designed in backward and forward versions, combined with
many different bounding techniques. Beam search also
has depth first and best first searches. There are several
different versions of temperature functions in simulated
annealing (Matsuo et al. 1989; Reeve 1993). Tabu search
has many varieties in building and managing tabu lists. Its
diversity in the literature is well summarized by Reeves

-171-



(1993).  Genetic algorithms, in particular in their
applications to scheduling problems, have also undergone
diverse variations. New approaches on crossover (Webster
et al. 1997; Norman and Bean 1994), mutation and parallel
genetic algorithms (Jog et al. 1998) have been tried for
better efficiency. Cleveland & Smith (1985) and Lee et al.
(1990) summarized the different crossover methods.

The third group consists of hybrid methods. Tabu
searches have been combined with genetic algorithms
(Costa 1995).  Genetic algorithms are mutated with
simulated annealing. There are also hybrids of tabu search
and simulated annealing (Malek et al. 1989). These
hybrid methods in the literature also provide information on
building a unifying algorithm that makes the existing
methods mutable with each other.

There are several studies combining the existing methods
from macro point of view. Ferland et al. (1996) offers an
object-oriented approach to combine the methods in
combinatorial optimization. Morton et al. (1993)
generalize all neighborhood search-based methods as
hill-climbing methods. The scope of their studies,
however, covers a small number of methods. This study
suggests more generalized framework covering most
methods in all three groups previously introduced. The
evolutionary approach we suggest in this study is similar to
the third group in that both use existing methods. But
there is a significant difference between these two. One
depends on human intuition and the other systematically
examines all possible combinations.  Therefore, the
approach we suggest in this study can be considered a
fourth group, a systematic evolutionary approach in
designing new methods from existing methods.

3. Genetic Programming for New Methods
Design

Algorithms and heuristics from the literature of
combinatorial optimization are analyzed as methods in
genetic pool. An understanding of the existing methods
will support discussion of the advantages and disadvantages
of each of them. Diverse efforts on designing new
algorithms or heuristics, generally in the form of hybrid
methods, are also studied in the literature. The main
features of each method are studied, along with its
limitations.

3.1 Analysis of Algorithms and Heuristics in
Combinatorial Optimization

The features of well-known algorithms and heuristics are
studied with their behavior of search in the solution space.
Each method has its own search technique. Some start the
search from a random point and continue the search by the
hill-climbing while the others start with a partial solution
and complete the solution by filling in the locally best
element one by one. Though it is not easy to find a
unifying algorithm that explains all these diverse methods,
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this study tries to build the kernel that covers most methods
in the literature.

We can largely classify the methods in combinatorial
optimization into two groups: optimization methods and
heuristic methods (Baker 1995). The optimization
methods, such as Dynamic Programming (Srinivasan 1971)
and some Branch & Bound algorithms (Greenberg 1968),
must inevitably find the optimal solutions for given
problems. Heuristics, however, are not guaranteed to
produce optimal solutions. Examples of heuristics are
Neighborhood Search (Wilkerson and Irwin 1971), Genetic
Algorithms (Holland 1975), Beam Search (Loweree 1976),
Simulated Annealing (Kirkpatrick et al. 1983), and Tabu
Search (Glover et al. 1989). This study evaluates these
methods according to two criteria: the quality of the
solution and the time it takes to get the solution.

3.2 A General Paradigm Deriving a Kernel as a
Unifying Representation Scheme of the Methods

The methods in the literature are classified into several
groups following their characteristic of search behavior in
the solution space: 1) neighborhood based hill climbing
searches, 2) branching based searches, and 3) dynamic sets
programming. Then, a generalized representation scheme
for each of these groups are prepared. Finally, these three
representation schemes are combined into a generalized
kemnel explaining all three types of methods. There are
steps we followed to build the kernel.

3 Genearlization Steps

Step 1: Categorize all methods into three groups.

Step 2: In each category of methods, generalize the
methods in a category into  one based on the 6
rules below.

Step 3: Generalize the three categories into one unifying
method, the kernel, based on the 6 rules below.

A method, either a2 method in the literature or a generalized
method, consists of subparts. These parts can be divided
into generalizable or optional parts. The generalizable
part is the part that can be shared by other methods. The
optional part is the part, which is unique to one method. A
generalized method is derived from these generalized parts
and optional parts when combined in the right order. To
unify the methods introduced above, the following set of
rules generalizing them has been considered.

6 Generalization Rules

Rule 1: Decompose each method into small steps. For
example, a simple neighborhood search can be decomposed
into the steps below:
Step 1: Find a solution randomly or by following
another method.
Step 2:  Generate solutions around the solution in



Step 2.

Step 3: Find the best solution among the solutions in
Step 2.

Step 4:  1f there is an improvement in the performance
of the new solution in Step 3, go to Step 1.
Otherwise, stop the process and take the
solution as the final solution.

Rule 2: The kemel consists of the generalized features
among the methods and the unique feature of each method.
For example, if method X = aBc and method Y = AbD,
the generalized form of X and Y is abcD. The assumption
here is that the upper case letter is contained in a lower case
letter (a © A). This means the letter a is a general form of
the letter 4. [Each letter represents a fact or process in the
methods.

Rule 3: If one feature can be generalized into the other,
add the generalized one into the kernel. If one feature is a
more generalized concept than the other, combine them into
one feature group by generalizing them. For example,
producing an initial solution set by general neighborhood
search-based local search and branch-based search are
different. Group them into one and save them as different
features in one group such as producing-initial-solutions.
aB** in X and Ab** in Y are generalized into ab**,

Rule 4: If a feature is unique, and thereafter which cannot
be generalized, move it into the new combined string. The
letter ¢ and D in Rule 2 are examples as they are mutually
exclusive features. For another example, tabu search can
be generalized into general neighborhood search except for
the tabu lists. The feature of a tabu list is added into the
generalized method.

Rule §: Categorize all feature sets into a similar group. If
they generate new solutions around a search point, group
them with a set name such as
generate-new-solution-around-a-search-point. If they
select the best solution from the neighborhood, group them
with a set name such as select-the
best-solution-from-the-neighborhood. 1f they are checking
stopping condition, give a set name such as
stopping-condition.

Rule 6: If the same features appear more than once, place
them in the same method, and treat them as a separate
feature. Therefore, AB and BA are different methods.
For example, if method X = aBc and method Y = AbAD,
the generalized form of X and Y is abAcD or abcAD.

Based on the 3 genrealization steps and 6 generalization
rules, along with an analysis of the methods in the literature,
a unifying method combining the methods in the literature
of combinatorial optimization has been derived. Section
3.3 shows how this kernel works when it is implemented by
computer programming.

A Suggested Kernel with 6 Steps

Step 1: Initialization
Initialize status variables.
Generate initial solution(s).
Step 2: Record “good” soiutions
Select solutions to keep.
Step 3: Check if the algorithm should terminate or
execute another iteration
If stopping condition is satisfied, exit the function.
Step 4: Select solution(s) that will be used to generate
new solution(s)
Select solution(s) to reproduce.
Step 5: Generate new solution(s) from solution(s) in
Step 4
Loop over solution(s) to reproduce.
{select solution(s) to reproduce
,generate solution(s) from selected solutions
, select child solution(s) to keep
, update memory on the old solutions
, remove selected on the top line inside this loop.}
End of loop.
Step 6: Update information on algorithm status
Update {Increment the loop counter, The iteration
of improvement, The magnitude of improvement,
The percentage improvement, True if improve on
best solution, Update the cost of the best solution,
Update Store total CPU time, Update algorithm
status.}
Go to Step 2

Step 1 initializes all the variables in the program. It
initializes the initial population. The trial solutions can be
generated randomly for hill climbing methods such as a
neighborhood search, simulated, annealing, tabu search,
and genetic algorithm. It can also be generated following
one of the methods in the literature. For example, the
solutions in the initial population of the genetic program
can be produced by neighborhood search method. For
branch & bound, beam search, and dynamic programming,
partial solutions are produced as an initial population.
Variables checking the run time, iteration counter, and
improvement of the performance are set to zero.

Step 2 records the best solution set from the population
combining the solutions in the previous iteration and the
solutions in the current iteration. The new solutions in the
current iteration are produced from the old solutions in the
previous iteration. As the new solutions do not always
produce better solution, the best solution is selected from
both old and new solutions set. In this study, we call this
solutions set a population. In branch & bound, beam
search, and dynamic programming, the best partial
solutions are saved.

Step 3 checks the termination condition. If the condition
is met, it stops the iteration. Otherwise, it evaluates the
performance of the solutions in Step 2 to check the
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improvement of the performance. For example, if the
performance of the newly generated solutions in genetic
algorithms does not improve after a given number of
iterations of evolution, the iteration stops here. In branch
& bound, beam search, and dynamic programming, it stops
when the best solution is in complete solution form.

Step 4 selects solutions that will be used to generate new
solutions. In neighborhood search, for example, the best
solutions set is selected to generate neighborhood solutions.
In genetic algorithms, the solutions with better performance
have more chance to be selected for this set.

Step 5 generates new solutions using the solutions in step 4.
In neighborhood search, the neighborhood solutions are
generated a method such as pairwise exchange. In genetic
programming, solutions are generated by mutating solutions
in the previous step.

In branch & bound, beam search, and dynamic
programming, solutions are automatically generated
following their rules.

Step 6 updates the variables initialized in Step 1. The
iteration goes back to Step 2. Step 2 through Step 6 is
iterated until the stopping condition is satisfied.

The kernel is comprised of if-then statements, looping
control structures, arithmetic operations, set function
operations, and five main functions. The logic of these
functions is controlled by the parameter values in the set P.
The specific values of the parameters, which essentially
define a specific algorithm, are created and reproduced in a
manner that is analogous to the process of evolution in
nature.

3.3. Implementation of the GP to Deriving New Methods

Human cell has a DNA, which is a huge string of repeating
nucliotide units. Each of these units are comprised of a
phophate group, a sugar, and bases of ademine (A), thymine
(T), cytosine (C), and guanine (G) (Primrose 1997). As
these four base elements are the recipe for the machinery of
human life. Five function elements group of Generate,
Select, Ealuate, CPUtime, and Stop are the basic building
blocks of chromosome in this study. A chromosome,
which corresponds to a method, is represented by the
parameter values in set P. This can be a method or hybrid
of among the methods in the literature. Each chromosome
in the population solves randomly generated problem
instances. In our testing problems, the size of the
population is between 10 and 500 and the number of
problem instances is between 20 and 100. The fitness of
each P set is assessed by the relative quality of the solution
generated by a given P set. The measure of quality for
this set, for example, would typically be an additive
function of CPU (Computer Processing Unite) time, cost of
being late, and possibly memory requirements (e.g.
wl*CPU time + w2¥*solution quality + w3*memory
requirements). Members of the population die and
reproduce in a biased random way according to the fitness

of a solution.

There are various choices reflected in the parameter values
of P for each step in the kemmel. Different combinations of
parameter values in the kernel replicate wide variety of
algorithms in the literature such as Neighborhood Search,
Tabu Search, Branch & Bound, Simulated Annealing,
Simulated Learning, and Genetic Algorithms.  The
number of unique algorithms that can be created by this
approach is currently 10%° theoretically from combinations
based on the number of selection functions, generation
functions, evaluation functions, and stopping functions in
their positions in the kernel.

If the kernel is the basic structure of a house, functions are
building blocks. The five function groups that are
executed in the kernel are: Select, Generate, Evaluate,
CPUtime, and Stop. Each function group is summarized
below (detailed steps of the functions will be presented
after defining the kernel logic). As a matter of convention,
we use the lower case letter ‘x’ (e.g., x,) to denote fixed
parameters and the upper case letter ‘X’ (e.g., X;) to denote
sets of data that may change during the execution of the
kernel.

Kernel for Implementation

Step 1: Initialization
CPUtime=Count=LastImprovement=Improvement=%Improvement=0
Koop = Xperm = Xgood = Xvad = Xstans = D

Knew= Generate(l sXmeasuresX ]genﬂsx lgen_me!hovagood)XbabX:laluJ»Xpop)

MinCost = min {Evaluate( Xmeasures Xnew) }

Xotars = {CPUtime,Count,LastImprovement,
Improvement,%Improvement, MinCost}

Step 2: Record “good” solutions
Xeemp = Xpop \J Xnew
X, perm = Se]ect(l KXmeasuresX Isdﬁ,x l:d_merhod,Xgood,Xbad#‘,:mlm,Xpem )leemp)

Step 3: Check if the algorithm should terminate or execute another
iteration
i SOP(, Xstop_conditions Xstatuss Xnew)
Xiemp = Evaluate(l Xnesure,Xperm)
:exit while returning the values of Xiumus, Xiemp, & Xperm
:endif

Step 4: Select solution(s) that will be used to generate new solution(s)
Xpop = SeleCt(I Jmeasureyx-senrrxzsel_method/\;ood,Xbadxmms,vap/Ynew)

Step 5: Generate new solution(s) from solution(s) in X,
Know =D
Xiemp = Xoop

wwhile [Xiemp| > 0
Xrep = SeleCt(I yxmea:werxB:el#,xJsel_melhod,){good,Xbad/‘,smluJ)l"lemp)
Xlrid = Generate(l rxmeu:urerxz gen#rngzn_melhod/ygoodyxbad)Xrlalux/Ymp)
Xoew = Xnew U Select(/, rxmea.ﬂmzyx‘xem,xale_merhody/‘,good,Xbad»/Y:mtm,ind)
/Ygaod = Sel ec‘(I KmeasuresX s.relﬂyx S_vel_merhod/YgoodyXbad%mm:yX u»’/‘,kid)

Xbad = select(l ,xmeasum,x6:eI#,xésel_melhad%ood,xbad’x‘mlus>Xn¢w»ind)
A;lemp = IYlemp\me
:endwhile
Step 6: Update information on algorithm status
Count = Count + 1
Xiemp = min{Evaluate(] Xmeasure: Xpop) }
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ot min {Evaluate(/ X meosures Knew) } < Xigmp
Lastimprovement = Count
Improvement = X, o, - min {Evaluate(l, Xmesure,Xnew)}
Ylmprovement = [X,emy - min{Evaluate(/, X meosures Xnen)} )/ Xiemp
Aif min{Evaluate(/ Xmeqsure; Xnew)} < MinCost

MinCost = min{Evaluate(/,X neoure,Xoer) }
rendif
endif

CPUtime = CPUtime

Kitaus = {CPUtime,Count,LastImprovement,
Improvement,%Improvement, MinCost}

:goto Step 2

The variables in above kernel are explained below:

. Iteration contains the current iteration number of the
major loop in the algorithm (the major loop is comprised of
Steps 2 through 6)

. LastImprovement contains the most recent iteration that
resulted in a solution with lower cost than the previous best
solution

. Improvement contains the magnitude of improvement
found in iteration LastImprovement

. %lmprovement contains the percentage of improvement
found in iteration LastImprovement

. MinCost contains the cost of the best solution attained

. CPUtime contains the CPU time since the kernel began
execution

. Xpop is a set variable that contains the population of
solutions being considered in the current iteration (solutions
are specified as a sequence of job numbers)

- Xperm = 15 a set variable that contains solutions that are not
to be discarded (this set is typically the set of the best
solutions found so far)

- Xiemp 18 a set variable for temporary storage

- Xrp is @ set variable that contains solutions that will be the
basis for generating new solutions. For example, through
pairwise interchange of jobs, or through recombination, or
any number of other means. In the terminology used in
discussions of genetic algorithms, X,,, is the set of solutions
that are allowed to reproduce

. Xuaq 18 a set variable that contains new solutions that are
generated from existing solutions (i.e., in a sense, these
solutions are “children” of an “older generation™ of existing
solutions)

. X,ew 18 2 set variable that contains new solutions that are
generated from existing solutions and that are to be kept for
further consideration

. Xgooa and Xy, - see description under the select function

4. Tests and Analysis

The following describes a design to test an experiment with
genetic programming for new methods design. The
maximum population size is 1000, the crossover rate is 0.7
or 0.6, and the mutation rate is 0.03. The crossover
method is a PMX method. The solution here represents not
only a method, but it also a complete computer program

solving combinatorial problems. Tests have been
performed with different sets of problems, maximum time
limit in evaluating one solution, initial node size, and
methods of initializing the population. The evaluation of a
solution is based on weighted performance and time.
Tests have been performed with different sets of weight
values assigned to performance and time. A problem set
has one to five instances and each instance has a maximum
of 10 jobs in it. The maximum time allowed to evaluate a
solution ranges from 12 seconds to 20 seconds. This time
limit helps the program run efficiently by cutting out
inefficient solutions. The population is initialized in three
different ways: 1) random initialization, 2) intentional
initialization with replication of existing methods, and 3) a
mix of methods 1 and 2. The population in the genetic
programming is normally initialized randomly. But, the
experiments show that a large portion of the solutions in an
initial population is very low in performance quality and
this leads to poor quality of solutions due to a lack of good
schema at the beginning stage of the genetic search. To
boost the quality of solutions, some algorithms or heuristics
are intentionally inserted into the initial population. In
this way we artificially mix good schemas into the solution
pool to take advantage of them. Sometimes the evolution
starts only with replicated methods to check how methods
in the literature can evolve together. For testing purposes,
7 selection functions, 4 generation functions, and 3 stop
functions are selected into the gene pools, where there are a
set of selection functions and a set of generation functions.
The generation functions either generate a set of solutions
from a given set of solutions or generate an initial
population. The first generation method randomly
generates a number of solutions into the population. This
function is generally used to initialize the populations.
The second generation method generates a set of solutions
around a set of input solutions. This function feature is from
neighborhood search-based searches. The third generation
method generates a set of solutions by mutation and
crossover from a set of input solutions. This function
feature is from genetic algorithms. The fourth generation
method generates a set of solutions from a set of partial
solutions. This function feature is from branch & bound
and beam searches. When the generation function
receives parameter values corresponding to other than these
four methods, the default is to return the input solutions as
the output.

4.1 Definition of the Problems for the Test

A set of job shop problems, as in Table 4.1, with processing
time, due date, arrival time, and weights on the jobs are
randomly created. The objective function is to minimize
total weighted tardiness. A problem set consists of several
sets of sequencing problems, each with 10 jobs in it. A
candidate solution, in the form of string of numbers, is
applied to this set of problems. Each number in the string
means a function or method. The performance of the
solution is the sum of tardiness from all the problems in a
problem set.
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. WOT: Weight on time

JOb l : 2 3 4 NO MTL OP WOT Method:
# P IPS Wi ethods
dj 9 7 11 13 1 1 12 12 (rep.) 0.9 0.1 15111211210021121
w; 1 1 1 1 2 1 12 12 (rep.) 0.5 0.5 12111211216022121
3 T 2 12(repy | 0.1 09 12111211210021121
Table 4.1 An Example of Job Shop Problem 4+ |1 12 12(ep) | 100 | 00 [ 151101411270722443
5 2 12 12 (rep.) 0.9 0.1 18111117210122121
4.2 Test Results and Analysis 3 3 12 12Gepy | 05 05 T3111311210020121
7 2 12 12 (rep.) 01 09 11111111216022121
As the number of problems in a problem set or the 5 |3 1 12(ep) | 09 | 01 T1111111215021121
popu]ation size increases, the more time is needed to 10 3 18 12 (rep.) 0.5 05 13111317210012121
evaluate one solution in populations. Table 4.2 shows the T3 T ey 0T Tos [iTITITITZI00Z112]
test result with five input parameters: number of instances, TS 5 Te) o5 o1 TITi2Ti 612200
maximum time to evalua.te a method, the method of 71 % ey 105 105 T T2TITZ1T316033170
initializing population, weight on the performance, and T3 % ey o7 o5 [ TTTTTITIZ3003TT2T
Welght on the time. 15 2 20 80 (ran.) 0.9 0.1 12111211210032121
) L. . . . 16 2 20 80 (ran.) 0.5 0.5 1111111121771701121
F}?llOWIth thel de.ﬁhnlnon Of flu:lc?aonsh m ;he prevflo]l;ls 17 2 20 80 (ran) 0.1 0.9 1111111121022511121
¢ ?pter’, the algonthm represented by the S(,) ution of the 18 | 2 20 80 (both) | 0.9 01 1511151221072972121
string is analyzed. The first column in Table 4.2
19 2 20 80 (both) 05 0.5 2211121121212892121
represents output numbers. The second column represents
. . 20 2 20 80 (both) 0.1 09 221112132763832121
the number of problems in a problem set. The third

column represents the maximum time limit in evaluating
one solution in populations. The fourth column represents
the population size, which is the number of solutions in a
population and the method of initializing the population.
Rep in the fourth column means the population is initialized
with methods in the literature. Random in the column
means the population is initialized with random generation.
Both means the population use both rep and random
initialization methods. The fifth and sixth columns
represent the weights on performance and time when
evaluating solutions. The last column represents a
solution that is actually a method in the form of a numeric
string. A solution consists of 17 numbers: the first 6
numbers represent the number of solutions to be selected
from a given parent population. The next 6 numbers
represent selection methods for six select functions in the
kernel. The next 2 numbers represent the number of
solutions generated by a generation method. The next 2
numbers represent generation methods. The last number
represents the stopping condition. The solution in Output 1,
for example, has a solutionof { 1,5,1,1,1,2,1,1,2,1,0,
0,2,1, 1,2, 1}. Based on this method, the kernel first
generates two solutions randomly in Step 1 of the kemnel.
Then it selects the best solution from these two in Step 2.
In Step 3, it evaluates the solution. It then selects the best in
Step 4. In Step S, it picks the one it chose in Step 4 for
reproduction. Then, it generates solutions in the
neighborhood of the selected solution. Then it selects the
best of the neighborhood solutions. It does not use tabu
memory or simulated learning for optimization.

.#  :Serial number of new methods as outputs from tests
. NOP: Number of Problem Sets

. MTL: Maximum Time Limit in Seconds

.IPS: Initial Population Size

. WOP: Weight on Performance

Table 4.2 Test Results with New Methods

Both solutions in Output 2 and Output 3 also represent
neighborhood search method. The solution in Output 4
represents branch and bound with a tabu list. The number
4 in 15" and 16™ represent the branching method and the
number 7 in 10® and 12® position shows tabu list and its
implementation. The solutions in Qutput 5, 6, 7, 9, 10, 11,
12, 13, and 15 represent a deviated version of a
neighborhood search method. The solution in output 14 is
a neighborhood search. But, when it selects the best
solution from neighborhood search, it chooses the solution
with a probability based on performance. The solutions in
Output 17 and 19 are all neighborhood searches. They,
however, produce large number of solutions in the initial
population. The solutions in Output 16 and 18 is a tabu
search with a large size of initial population. The solution
in Output 20 is a simulated anneal with a large size of initial
population.

Below facts are derived from analysis of test results:

Fact 1:Ifthe Weight on Time is less than 0.1, Branch & Bound
with Tabu list is the best.

Fact 2:Ifthe Weight on Time is greater than or equal to 0.1 and
Number of Problems is less 4, then Neighborhood
Search is the best.

Fact 3:Ifthe Weight on Time is greater than orequal to 0.1 and
Number of Problems is greater than or equal to4 and
WeightonTimeislessthan0.3,thenProbabilitybased
Neighborhood search is the best.

Fact4:Ifthe Weight on Time is greater than or equal to 0.1 and
Number of Problems is greater than or equal to 4 and
Weight on Time is greater than or equal to 0.3, then
Neighborhood search is the best.
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Theserulescanbeusedtomakeadecisiononthemethodselection
inthefuture. Whenthetimeallowedtomakeamethodselection
isenough, itispossibletoproduce thebest method from genetic
simulation.In case, however, the decision has to be made ina
short time, we can choose the best method following the rules
from past simulation data.

4.3 Findings

Neighborhood search is overwhelming in most of the
solutions reported in Table 4.2. The reason for the
dominance of the neighborhood search may be its
generality.  If a method is specialized instead of
generalized in a small highly competitive population,
genetic programming can hardly catch the specialized one.
It is a lot easier to grow weeds than flowers. Generality is
adaptability in natural selection. It means a greater chance
the general ones to survive in competition. But, when the
time factor is totally ignored, the competition changes in
favor of mathematical approaches. Now they have a
greater chance to be selected. As is shown in the case of
Output 4, if we assign all weight to the performance, branch
and bound will be the best method for a problem. It
means when we totally ignore the time factor in evaluating
methods, branch based methods, especially branch and
bound, will be dominant methods. It also seems that tabu
list helps the search of branch and bound. The last five
cases in Table 4.2 shows that when the population size
increases, the number of solutions in the initial population
dramatically increases. When the weight of time is close
to 1, neighborhood search is dominant. An intuitive result
shows that a simple heuristic seems to be efficient under
time pressure. We can also see that tabu searches emerge
in three cases of output 4, 16, and 18. A summary of
findings is below:
O Generality wins over specification in intense
competition.
O Generality wins under a time limit.
0O Mathematical methods are dominant in performance.
0 Tabu list helps efficiency in most cases.

5. Conclusion

In this study, we confirm that the kernel, suggested by
generalizing paradigm, works as a generic framework in the
evolutionary approach. Within the kernel, all possible
solutions, in the form of programs, from genetic
combinations are in valid forms. This genetic system also
adapts to new problem sets by changing its solutions for the
problems. It also demonstrates that this evolutionary
approach can be successfully applied to the design of new
algorithms. The test, however, shows that the time to
derive solutions by genetic simulation is relatively long.

The main contribution of this study is on the theoretical
side. It suggests a generic framework enabling mutation
among heterogencous members in a genetic population.
The major contributions of this study can be summarized as
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below:

Q Classification of Main Algorithms and Heuristics in
Combinatorial Optimization into Groups by Their
Features

O A General Paradigm Deriving a Kernel with Steps
and Rules as a Guideline

O A Kernel as a General Structure Covering the Main
Methods in Combinatorial Optimization

Q Facts Found from Genetic Simulation: the
performance of each method with different condition
factors such as size of problems, weights on
performance & time

Q An Evolutionary Approach
Designing New Methods

Implemented to

This suggested generic system not only produces solutions
in the form of programs, it also adapts itself to new problem
environments. As problems change, the system finds the
best method from combinations in its genetic pool. The
solutions produced from the system from genetic
cultivation are algorithms in a program form. They also
return the best solution along with the best method
cultivated in a genetic pool for a problem set.
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