Context Awareness in Ubiquitous Computing Nov. 19 2004 Prof. Young-Tack Park And Amara Annatalia School of Computing Soongsil University

Talk Outline

- Contexts
- Ontology
- Context Awareness
- Context Aware uT Agents
- Summary

Contexts

 Any information that can be used to characterize the situation of entities that are considered relevant to the interaction between a user and an application, including the user and the application themselves.

.

Ontology

- Approximate conceptualization of a domain by a formal language and vocabulary
- Application's view of the worlds in terms of interrelated concepts
 - Define all of the concepts in a taxonomic hierarchy
 - Define the properties and relationships
- Provides a means for software agents to reason about contextual information
- Semantic interoperability

Why Ontologies in Ubiquitous Computing?

- Enabling knowledge sharing
 - A common ontology enables knowledge sharing
- Modeling contextual knowledge
 - Explicit and declarative model
- Reasoning contextual knowledge
 - Well defined declarative ontologies allows agents to reason about contextual information

13

Use of Ontology

- A key to realization of vision of ubiquitous computing
 - Computer systems are seamlessly integrated into our everyday life, anticipating our needs and providing relevant services and information to us in an anytime-and-any-where fashion.
- Shared ontology can help independently developed systems to share knowledge and interoperate.
- Coupling with inference engine, ontology is used by ubiquitous system to reason about relations in and the meanings of the described information.

Ontologies in Ubiquitous Computing

- Context ontology
 - Describe contextual information
 - Used to infer new context information
- Service ontology
 - A taxonomy of the services

15

Context Ontology

- The ontology describes a set of terms for describing context knowledge.
- Sharing
 - Context ontology allows agents to share a common understanding of the information
- Reasoning
 - reason about additional information that us beyond what is already known

Examples

- Physical contexts
 - * Location, time
- Environmental contexts
 - * Light and sound level, weather
- Device contexts
 - Mp3 player and songs in it, beam projectors
- Personal contexts
 - Health, mood, schedule, activity
- Social contexts
 - Group activity, social relationship
- etc, like system contexts

17

Representation of Ontology

- OWL(Web Ontology Language)
 - Contextual ontology
 - Related Works
 - CoBrA, Prof. Tim Finin at UMBC
 - GAIA, Prof. Roy Campbell at UIUC
- OWL-S
 - Service ontology

uT Ontology

- Ontology representation
 - OWL(Web Ontology Language)
 - Protégé 2000
- SOUPA(Standard Ontology for Ubiquitous and Pervasive Applications)
 - A set of ontologies for supporting pervasive and ubiquitous computing applications.
 - SOUPA Core and SOUPA Extension
- uT Generic ontology
- Time
- Space
- Person
- Application ontology
 - Well being application

uT Agent

••• ••• ••• •• •• ••

- JADE 기반의 agent
- Inference engine
 - * JESS
 - Agent specific knowledge base
- Ontology
 - OWL
- Communication
 - OWL-based JADE communication

JADE

- FIPA multi agent framework
- Agent Management System
 - White page
- Directory Facilitator
 - Yellow page
- Agent Communication Channel

- FIFA Message type
- ACCEPT-PROPOSAL
- AGREE
- CFP
- CONFIRM
- DISCONFIRM
- FAILURE
- INFORM
- INFORM-IF

- INFORM-REF
- NOT-
- UNDERSTOOD
- PROPOSE
- QUERY-IFQUERY-REF
- REFUSE
- REFUSE-PROPOSAL
- REJECT

- REJECT -PROPOSAL
- REQUEST
- REQUEST-WHEN
- REQUEST-WHENEVER
- SUBSCRIBE
- PROXY
- PROPAGATE

3

JADE and OWL

- FIPA does not support OWL parser for ACL.
- In a near future, FIPA will support.

```
OWL-based ACL
 (inform
    :sender agent1@domainname:1098/JADE
    :receiver agent2@domainname:1098/JADE
    :language OWL
    :ontology a-particular-theme
    :content
   <?xml version='1.0'?> ")
 </mmi version=1.0*/> ")

crdf:RDF xmlns='http://ailab.ssu.ac.kr/ontology/ubiProject/ontologies#' ")
xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' ")
xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#' ")
xmlns:owl='http://www.w3.org/2002/07/owl#' ")
xmlns:fipaowl='http://taga.umbc.edu/fipaowl#' ")
   xml:base='http://ailab.ssu.ac.kr/ontology/ubiProject/ontologies#'>")
   <Person rdf:ID='park'>") <hasName>Young-Taek </hasName>") </Person> ") <Schedule rdf:ID='park'>")
   <br/><byPerson><owl:Thing rdf:ID='Young-Tack '/></byPerson> ")
   <duringTime rdf:resource='pm 2'/> ")
   <hasContent rdf:resource='#Agent System'/> ")
   </schedule>")
</rdf:RDF>") "
                                                                                                                        33
```


Summary

- uT ontologies can enable context awareness to represent more rich information.
- Ontologies enable uT agents to reason about dynamic contexts.
- Multi agents can use ontologies to communicate between agents.