경제성 평가 방법론 -연구설계와 결과평가-

Economic evaluation: study design and outcome evaluation

건국의대 예방의학교실이 건 세

Trends in economic evaluation

Decade approach	cost	outcome
60's cost-benefit analysis	\$	\$
70/80's cost-effectiveness analysis	\$	natural unit
80/90's cost-utility analysis	\$	QALY
00's outcome measurement:	\$	QALY or
utilities, conjoint analysis,		\$ (WTP)
willingness to pay		

Phases in an economic evaluation

Phase 1: design of the study

Phase 2: measuring and valuing costs

Phase 3: measuring and valuing benefits

Phase 4: discounting

Phase 5: sensitivity analysis

Phase 6: applying a decision rule

Phase 1:design of the study

- perspective (societal/third party payer)
- selecting the alternative
- experiment / model
- outcome parameters
- time horizon

Choice of comparator

- most efficient alternative
- standard treatment (volume, market share)
- consider "no treatment"

Modelling complementary to prospective approach

- intermediate to final outcome
- beyond trial duration
- beyond indications trial patients
- beyond trial setting (costs and outcomes)
- compliance patients and physicians

Time Horizon

- choose time horizon
 - all consequences in terms of costs and outcomes are taken into account
- if observation period of a clinical trial is shorter
 - modelling may be appropriate to study long term consequences

Principles of costing: (phase 2)

- Resource use by all parties concerned (societal perspective)
- Actual use of resources, which can not deployed elsewhere
- Financing system is irrelevant
- identification of resource items
- measurement of resource use
- estimation of the value of the resources

Phase 3: outcome

dependent on relevant outcomes

■ CEA: Natural units

■ CUA: QALY

■ CBA: monetary valuation

Outcome measures

- CEA and CUA
 - CEA: single, program-specific, unvalued, natural units
 - CUA: single or multiple, general, valued
- CBA
 - value benefits in monetary terms : worthwhile?
 - benefit : not only cost savings
 - but also monetary value of health outcome

Outcome measures 1: CEA

- Choice of effectiveness measure
 - final output. life-years gained
 - intermediate output: cases found, patients treated.
- admissible intermediate output
 - link between intermediate and final output
 - some values in itself. diagnosis, provide reassurance.
- Effectiveness data: How should be obtained?
 - availability of data: crucial
 - major source: medical literature
 - quality, relevance

Outcome measures 1: CEA

- data from published literature
 - single trial
 - overview or meta-analysis
- Relevance
 - Methodologic principles
 - literature search techniques, inclusion/exclusion criteria, choice of endpoint, patients characteristics, details about therapy(drug dose), statistical procedures, sensitivity analysis

Outcome measures 1: CEA

- Quality
- Level of evidence

•	Level I	large randomized trials with clear-cut results	Grade A
•	Level II	small randomized trials with uncertain results	Grade B
-	Level III	non-randomized, contemporaneous controls	Grade C
-	Level IV	non-randomized, historical controls	Grade D
=	Level V	no controls, case series only	Grade E

Modelling vs. empirical research

- Empirical research: to gather data and information
 - prospective trials, retrospective data gathering (patient files, administrative databases).
- Modelling: to synthesise data and available information
- 'Models provide an explicit bridge between primary data and the decision they inform'

Modeling: Why

- To extend available information:
 - to extrapolate trial results from a short term to a longer term
 - to add cost data to outcome trials
- To combine available information:
 - to extrapolate intermediate results to final results
 - to combine alternative courses of action
- To generalise trial results
 - from controlled trial circumstances to daily practice
 - from (academic) trial setting to daily (general hospital) setting
- To explore potential value of empirical research
 - to estimate the value of empirical research
 - to generate research hypotheses
 - to identify crucial information and data

Decision analytic modelling

- Comparison of two or more diagnostic and/or therapeutic strategies
- The consequences of the alternative courses of action are uncertain
 - different clinical events (success, failure, complications etc.) might occur
 - several final health outcomes are possible
 - different costs can be relevant
- A patient population can be defined that might benefit

Structure of a decision analytic model

- Definition of the patient 'population'
- Comparison of alternative strategies
- Definition of probabilities of (clinical) events and related costs
- Patient health state defined as final endpoint as a result of a clinical pathway

Results of a decision analytic model

- Probabilities to reach a health state (path probabilities)
- Path probability * pay off (costs, health state): contribution to the overal, expected value of a strategy
- Expected value (costs, health state) of the diagnostic/therapeutic strategies compared
- Comparison of the diagnostic/therapeutic strategies on the basis of the incremental cost-effectiveness

Markov modelling

- A patient's situation may vary over time
- The states that can be distinghuised are different regarding costs and value of health

Questions and answers:

- What is the duration that a patient will be in the specific health states
- What is the total value (costs, health) of the patient's time in the different health states

Modelling con's

- Does not result in new data or new information
- (Over)simplifies the complicated, real world
- Model structure subject to bias
- Model input subject to bias
- Misinterpretation of the results is easy

Modelling pro's

- Makes explicit definition of relevant patient group, clinical events, patient outcome, costs etc. necessary
- Shows what data and information are lacking
- Shows uncertainty of input and outcome
- Makes it possible to examine the impact of input uncertainty
- Relatively fast and simple (compared to empirical research)
- Relatively cheap

Outcome measures 2: CUA

- Why CUA?
 - to compare a broad set of interventions different interventions: different effects
 - to incorporate a large number of outcomes life extension, quality changes, side effects
 - to weight the different outcomes important: more valued consumer preference

Outcome measures 2: CUA

- By converting effectiveness data to a common unit of measure, like QALYs gained
- changes both in the quality of life (morbidity) and in the quantity of life (mortality)
- simultaneously incorporated in the analysis
- In the QALY approach, the quality adjustment is based on a set of values or weights called utilities, one for each possible health state, that reflect the relative desirability of the health state.
- The conventional scale for utilities is death = 0 and perfect health or full health = 1

CUA: when?

- Health-related quality of life is an important outcome
- A health care programme affects both morbidity and mortality
- To compare programmes that have a wide range of different kinds of outcomes (resource allocation deci sions)
- To compare with programmes evaluated by CUA in the past

CUA: Example

Treatment programme A

- Average costs: € 20,000
- Utility for health state during tr eatment of 6 months is 0.6
- After treatment half of the pati ents die
- Other half of the patients live on average for 3.5 years
- In a health state with a utility o f 0.8

QALYs =
$$(0.5*0.6)+(0.5*3.5*0.8)$$

=1.7

Treatment programme B

- · Average costs: € 30,000
- Utility for health state during tr eatment of 6 months is 0.5
- After treatment 40% of the pati ents die
- Other 60% of the patients live on average for 4 years
- In a health state with a utility o f 0.8

Incremental Cost-Utility ratio is 10,000/0.47 = € 21,277

Health Related Quality of Life (HRQoL)

- Subjective
- The patient reports (not the doctor)
- a multi-dimensional construct Dimensions:
 - Physical well-being
 - Social well-being
 - Emotional well-being
 - Usual activities (Self care, Housekeeping and Paid and unpaid work)
 - Pain
 - Symptoms

Quality of life instruments

- Generic:
 - EuroQol instrument EQ-5D
 - Health Utility Index
 - Quality of Well-Being
 - SF-36
 - Nottingham Health Profile
 - Sickness Impact Profile

- Disease / Condition Specific:
 - Developed for a specific disease s (Parkinson disease) or group of conditions (Cancer)
 - Contain detailed questions on di mensions of health that are affec ted by the disease concerned an d its treatment

Result of completing a quality of life instrument

- Description of a persons health state
 - Profile scores for every dimension
 - Summary scores
- Use in economic evaluation:
 - preference scores or utilities, reflecting the desirability of health states

Example: SF-36 profile scores

	Norm (adults U.S.)	Asthma
Physical Health	50	
Physical Functioning (3)	84.2	61
Role-Physical (4)	80.9	53
Bodily pain (7, 8)	75.2	77
General health (1, 11)	71.9	55
Mental Health	50	
Vitality (9a,e,g,i)	60.9	54
Social Functioning (6, 10)	83.3	80
Role-Emotional (5)	81.3	79
Mental Health (9b,c,d,f,h)	74.7	78

EQ-5D Mobility **1** I have no problems in walking about I have some problems in walking about $\square 2$ I am confined to bed **□**3 Self-Care I have no problems with self-care $\Box 1$ $\Box 2$ I have some problems washing or dressing myself □3 I am unable to wash or dress myself Usual Activities (e.g. work, study, housework, family or leisure activities) I have no problems with performing my usual activities I have some problems with performing my usual activities $\Box 2$ □3 I am unable to perform my usual activities Pain/Discomfort \Box 1 I have no pain or discomfort $\square 2$ I have moderate pain or discomfort I have extreme pain or discomfort $\square 3$ Anxiety/Depression $\Box 1$ I am not anxious or depressed I am moderately anxious or depressed $\Box 2$ □3 I am extremely anxious or depressed

How to assess the relative desirability (preference) of each possible health state?

	Question	n framing
Response method	Certainty (Values)	Uncertainty <i>(Utilities)</i>
Scaling	Visual Analogue Sc ale	_
Choice	Time Trade-Off	Standard Gamble

QALY Analysis

- Value (V) of quality of life (Q)
 - V(Q) = [0....1]
 - 1 = healthy
 - 0 = dead
- Adjust life years (Y) for quality of life
 - \blacksquare QALY's = Y * V(Q)
 - Y: numbers of life years
 - Q: health state during life years
 - V(Q): the value of health state Q

Methods to value health state (SG)

Preference score (utility) for state $i = h_i = p$

Whose preferences count?

- Patients
 - Clinical QoL research
 - Medical decision making
- General Public
 - Economic Evaluation (resource allocation decisions)

Patients' values ≠ values of general public

- Patients
 - value their own health state
 - are familiar with the disease, its symptoms, the effects of treatment
 - adapt to the disease and treatment (coping),
 - resulting (in general) in higher values than the values of the general public
- Persons from the general public
 - are in general healthy people, only small fraction is sick
 - value hypothetical health states
 - resulting (in general) in lower values than the values of patients

Factors influencing the values of health state

- Valuation method
 - SG. TTO. VAS
 - whether or not in combination with the descriptive system of the health states to be valued
- Perspective
 - Patient
 - General public
- Operational definitions: Interview bias
- Country: Culture?
- Socio-economic factors:
 - Age, gender (hardly any influence)
 - Education (small influence)
 - Religion and beliefs about life after death

Outcome measures 3: CBA

- Decision making based on monetary value CEA/AUA: QALY league table
- Broader in scope. health and non-health
- Allocative efficiency
 CEA/AUA: production efficiency
- Quantify externalities(spill over effect)
 CEA/AUA: narrowly client-focused
 willingness-to-pay technique
- conforms more closely to Welfare Theory

Contingent valuation

- Appraches to the monetary valuation of health outcomes
 - human capital
 - revealed preferences
 - willingness-to-pay(contingent valuation)
- Asking individuals for their maximum willingness to pay (WTP) for a gain in health
- Fits in Cost Benefit analysis (CBA)

Example WTP question

■ Are you prepared to pay ... for a drug that reduces the risk of getting a migraine attack by 50%?

Critique on CV-WTP

- WTP depends on ability to pay -> equitable?
- Scope effects: WTP responses tend to be undersensitive to the magnitude of benefit
- Budget constraint bias: WTP inflates valuations of interventi on asked about.
 - When asked for an intervention in isolation, WTP is far in excess of WTP when intervention is considered in relation to other interventions

Application CV

- First: extensively used in transport and environmental economics
- More recently: in health economics
- Upward trend in health economics
 - 1985-90: 11 studies (Richard 2003);
 - 1991-96: 32;1997-02: 68

Fundamental for design

- No real market: researcher introduces a hypothetical market
- Distinction between saying and doing -> thus we prefer revealed preferences instead of stated preference
- If only stated preference possible, we prefer the next best: simulating a plausible real-life situation with sufficient possibility that respondents take it seriously
- Behavioural in design (not attitudinal only)
- A specific program with specific attributes

Key issues in design

- how is information presented?
- type of payment vehicle for WTP
- commodity valued under uncertainty?
- what time period for valuation?
- how survey administered?
- WTP or WTA?
- (questionnaire format)

WTP or WTA?

- WTP for a nice good/service (a benefit)
- WTA (= WT accept) for a loss, is the counterpart
- Systematically found: WTA > WTP, for the same good/service (not in line with welfare theory)
- Reason: the endowment effect

Phase 4: Discounting

- Principle:
 - Effects in terms of costs or health gains are weighted less w hen they occur later in time.
- Reasons:
- time preference
 - Impatience
 - diminishing marginal utility of income
 - uncertainty
- opportunity cost of capital
 - the existence of a positive rate of return implies that one res ource unit in the future is valued less than one now!

Phase 5: uncertainty

- The values used in cost-effectiveness analysis are estimates
- Uncertainty is associated with all estimates
- Quantifying uncertainty through
 - Sensitivity analysis
 - Statistical analysis

Sensitivity vs. statistical analysis

- Sensitivity analysis
 - Quantifies uncertainty when values are:
 - Guessed
 - Determined from secondary sources
 - Approximated
- Statistical analysis
 - Quantifies uncertainty when values are estimated from a sa mple of a population such as in a randomised clinical trial

Types of Sensitivity analysis

- Goal is to find out how sensitive ICER is to changes in parameter.
- Univariate sensitivity analysis
 - vary only 1 parameter at the time
- Multivariate sensitivity analysis
 - vary 2, more or all parameters at the time
 - 'worst case' & 'best case'
 - threshold
 - Probabilistic
- Probabilistic sensitivity analysis

Univariate sensitivity analysis

- Change parameters one at a time, see how this influences ICFR.
- Preferably change every parameter, if not feasible, at least identify key-parameters to change
- Example cholesterol lowering
 - mean survival is between 25.8 years and 26.2 years with 95% probability
 - then CER is between € 11488 and € 7658
 - If societal WTP is € 10.000
 - no clear recommendation is feasible.

Multivariate sensitivity analysis

- In 2-way analysis, two key parameters are varied
- Threshold analysis:
 - a decision maker defines a ICER above which a new treatme nt is unacceptable
 - assess which combinations of parameter estimates could ca use the threshold to be exceeded
- 'Best case' and 'worst case' scenario give the most e xtreme outcomes of model.
 - If even in 'worst case' model outcome is acceptable, than we can be certain of outcome
 - If not, maybe not a problem, since likelihood of 'worst case' scenario might be far less then 2.5%

Problems

- How does one choose limits of range within which to vary parameter?
- When is the outcome considered sensitive to chan ges?

Choosing range

- If available use confidence interval (from RCT, casecontrol study or meta-analysis)
- Else use literature review, expert opinion, own judge ment
- Always vary upwards and downwards (be critical whe n only one direction)

When sensitive?

- Easiest rule of thumb: when decision changes, i.e. IC
 ER is no longer acceptable if it was at point estimate, or becomes acceptable if it was not at point estimate
- Describe sensitivity in terms of relative sensitivity, i.e. results most sensitive for changes in A, B, C, and lea st for X, Y, Z

Probabilistic analysis

- Most informative method, since it presents extreme outcomes, but also likelihood of outcomes
- Define probability distribution for each variable
- Where possible, base distribution on trial data
- Draw random number from each distribution and calculate ICER
- Repeat many times (1000-5000)

Distributions probabilistic sensitivity analysis

Phase 6: Decision rule

Cost-effectiveness of strategy 2 versus strategy 1

- benefits in natural units (e.g. life years gained, healthy babies)
- benefits in QALY's

QALY league table

GM CSF elderly with tent binia	\$235,958
EPO in dialysis patier is	\$139,623
Lung transplantation	\$100,957
End stage renal disease	\$53,513
Heart transplantation	\$46,775
Didronel in osteoperosis	\$32,047
Statins in high cholestarol	
PTA with Stent	
terbinafine in onychomycosis	
Breast cancer screening	
Viagra	
Congenital anorectal malformation	
Totaal	

Dutch Experience: Priority setting

- Defining Basic health package
- Dunning criteria
 - Necessity
 - Effect
 - efficiency(costeffectiveness)
 - individual responsibility

