20044 B2YEln|ciofts] FASE YRS =T

Efficient Content Adaptation Based on Dynamic Programming

Truong Cong Thang and Yong Man Ro
Multimedia Group, Information and Communication University (ICU).

ABSTRACT

Content adaptation is an effective solution to support the quality of service for multimedia services over
heterogeneous environments. This paper deals with the accuracy and the real-time requirement, two important issues
in'making decision on content adaptation. From our previous problem formulation, we propose an optimal algorithm
and a fast approximation based on the Viterbi algorithm of dynamic programming. Through extensive experiments,
we show that the proposed algorithms can enable accurate adaptation decisions, and especially they can support the

real-time processing.

1. INTRODUCTION

In a universal multimedia access (UMA) system,
content adaptation is an important method to provide
the best possible presentation under constraints of
various kinds of terminals and network connections
available today [1]. Basically, content adaptation
includes three major modules: decision engine,
modality converter, and content scaler (Fig. 1). The
decision engine analyzes the content description, user
preferences, resource constraints and then makes
optimal decision on modality conversion and content
scaling. The modality converter and the content scaler
include the specific converting and scaling operations
to adapt, either offline or online, the content objects
according to instructions from the decision engine. The
functionality of the decision engine is essentially the
same for both online and offline transcodings. It is
important that the decision engine can both provide
accurate solutions and support the real-time processing.

ser preferences

Output
objects

Content scaler

Input content !
descriptions +----

Fig. 1: Architecture of an adaptation engine

However, these two related issues of decision
engine so far have been considered very little. In [2],
the adaptation process was modeled as the resource
allocation and then solved by the Lagrangian method.
This method is supposed to have low complexity,
however it is notorious for the inaccuracy with the non-
concave content value (utility) function. In [3], several
searching algorithms were proposed to find the
appropriate adapted version of a single content object.
These methods are said to be effective, yet no
processing time have been reported.

In our previous work [1], we have proposed an
approach that effectively supports the content
adaptation under different constraints of terminals,

networks, and user preferences. In this paper, we show
that the Viterbi algorithm of dynamic programming and
some approximations can be used in this framework to
find the optimal solution and especially it is possible to

. support the real-time requirement of decision engine.

The paper is organized as follows. Section 2
reviews the problem formulation of content adaptation.
In section 3, we propose the Viterbi-based algorithms to
accurately solve the problem. Section 4 presents some
experiment results, and finally section 5 concludes the

paper.

2. PROBLEM FORMULATION

The decision-making process of the decision engine can
be represented as the traditional resource allocation
problem as follows [1]. Suppose we have a multimedia
document consisting of multiple content objects. Let
denote R; and V; the resource and content value of the
content object i in the document. The content value ¥;
can be represented as a function of resource R,
modality capability M, user preference P;:
Vi = fi(R;, M;, P)). (1

Then the problem of content adaptation for the given
document is that:

Given a resource constraint R®, find the set of

{Ry} so as

ZV‘ is maximum, (2a)
and Z R, <R (2b)

Regarding equation (1), we have proposed the
Overlapped Content Value (OCV) model to represent
the relationship between content value, modalities, and
resource [1]. Each content object will be given an
overlapped content value model (Fig. 2) representing
the content values of different modalities versus the
resource. The number of curves in the model is the
number of modalities the content object may have. The
final content value function will be the upper hull of the
model. Each point on the function corresponds to a
content version and is called a selection. Denote K; as
the number of modalities and VMj; as the content value
curve of modality j of the content object i, j=1...K;. The

- 326 -

20044 = HE|ojCjoits| FASSUHI S| =R

content value of a content object can be mathematically
represented as follows:

Vi= max{wy VMiR)|j=1..K;} 3)
where wy; is the scale factor of modality j of object i and
J=1is the original modality of the object.

Content
value

video
Image

T T audio
text

allocated
resource

resource

Fig. 2: Overlapped content value model of a content.

The OCV model is the underlying basis to support
user preferences and to make accurate decisions on
modality conversion and content scaling. The methods
to incorporate user preferences into the content
adaptation process have been proposed in [1]. Given the
OCV model for each content object, a resource
allocation method is then used to distribute the resource
among multiple contents. Mapping the allocated
resources back to content value models, we can find the

appropriate qualities and modalities of adapted contents.

In the next section, we will present the possible
solutions to this problem using Viterbi algorithm of
dynamic programming.

3. SOLUTIONS BASED ON DYNAMIC
PROGRAMMING

3.1. Optimal Solution by Viterbi Algorithm

A content value function can be continuous or discrete.

If it is continuous, we may discretize it because the

practical transcoding is done in the unit of bits or bytes;

from now on we implicitly suppose it is discrete. Then

a content value function will have a finite number of

selections. Meanwhile, function (1) is inherently non-

concave, thus the above optimization can be solved
optimally by Viterbi algorithm of dynamic

programming [4] [5].

The principle of Viterbi algorithm lies in building a
trellis to represent all viable allocations at each instant,
given all the predefined constraints. The basic terms
used in Viterbi algorithm are defined as follows (Fig.
3):

- Trellis: The trellis is made of all surviving paths that

link the initial node to the nodes in final stage.

Stage: Each stage corresponds to an object to be

adapted.

Node: In our problem, each node is represented by a

pair (i, a;), where i=0...N is stage number, q; is the

accumulated resource of all objects until this stage.

- Branch: If selection k at stage i has the value-
resource pair (Vy, Ry), then node (i-1, a;,) will be
linked by a branch of value ¥ to node (i, a;) with:

ai=a. + Ry, 4

satisfying (if not, the branch will not be linked):
a, <R . (%)
- Path: A path is a concatenation of branches. A path
from the first stage to the final stage corresponds to a
set of possible selections for all objects.

AResource
Buanches
IIQ
$
3
Stage i-1 Stage i Stage i+1
| ; é
i ! i 5
L N kel
Object i-1 Objecti Object i+l Object

Fig. 3. Trellis diagram grown by Viterbi algorithm.

From the above, we can immediately see that the
optimal path, corresponding to the optimal set of
selections, is the one having the highest accumulated
content value. We now apply Viterbi algorithm to
generate the trellis and then to find the optimal path as
follows [5] [6]:

Optimal algorithm:
Step 0: Start from the initial node (0, 0)

Step 1: At each stage i, add possible branches to the
end nodes of the surviving paths. At each node, a
branch is grown for each of the available selections;
the branch must satisfy condition (5).

Step 2: Of all the paths arriving at a node in stage
i+1, the one having the highest accumulated content
value is chosen, and the rest are pruned.

Step 3: Increase i and go to step 1.

Step 4: At the final stage, compare all surviving
paths then select the path having the highest
accumulated content value. That path corresponds to
the optimal set of selections for all objects.

In fact, the problem of resource allocation
represented as a constrained optimization is often
solved by two basic methods: Lagrangian method and
dynamic programming method [4]. However, the
Lagrangian method cannot provide accurate results
when content value functions are non-concave [4]. The
advantage of dynamic programming is that it can work
with the non-concave content value functions, helping
to find exactly the needed version. The disadvantage of
dynamic programming is the high complexity. Yet,
through practical considerations, we will show that the
Viterbi algorithm is suitable for real-time computation
of the decision engine.

3.2 Fast Approximation Algorithm

- 327 -

20044 st=HE|D|C|olgs| FASSLENS=RE

We see that the complexity of the above algorithm will
decrease if the number of selections is reduced. For this
purpose, one can intuitively omit or merge some
neighboring selections. We note that in the searching
process at each stage, if the current selection has a
negligible content value change compared to the last
un-omitted selection (called the last considered
selection), this selection can be omitted. So, if we set a
minimum threshold for the changes of the content
values, we can reduce the number of selections
considered for each object by omitting the selections
having the content value changes within the threshold.
Denote k" the last considered selection, we modify the
above step 1 to obtain a fast approximation algorithm as
follows:

Step 1: At each stage i, add possible branches to the
end nodes of surviving paths. At each node, do the
Jollowing:
Step 1.1: Add branch for selection 0
Step 1.2: Check the selection k (k > 0): if [Viery -
Viepe|>threshold and if (5) is satisfled, add
branch for selection k and let k* = k.
Step 1.3: Increase k and go to step 1.2

Meanwhile other steps are unchanged. The modified
step 1 constantly checks the content value changes and
tries to connect a branch only if the content value
difference between the current selection and the last
considered one is greater than the threshold.

4. EXPERIMENTS

We have developed a test-bed for providing the
multimedia services over heterogeneous networks. The
adaptation engine is built on a Windows2000 server
with Pentium IV 1.7GHz and 256MB RAM. In our
system, the content transcoding is simply done offline.
Scaling operations include reducing the spatial size for
video and image modalities, reducing bandwidth for
audio, and truncating the words for text. The resource
constraint is datasize constraint D°.

For experiments, we employ a multimedia
document consisting of six objects: one video, one
audio, three images, and one text paragraph. The
original datasizes of the objects are respectively
1500KBs, 480KBs, 731KBs, 834KBs, 813KBs, and
8KBs. The modality curves are modeled by the
following analytical function:

VMAR) = xi(Ri- y)/(Ri—yy + z;) (6)
where yj; is the starting point, z; is the slope of the
function, and x; is the saturate value of the function.

The highest possible content value for any objects
is 10, yet the actual maximum content value of each
object is assigned according to its relative importance,
which is also obtained from subjective tests. The
objects are transcoded in unit of kilobytes (KBs), so the
content value functions can be discretized by the
uniform step size of 1KBs. Also, all user preferences
are set to be default [1].

To check the response of the adaptation system, we
vary the datasize constraint D°. Table I shows the
document versions adapted to different values of D°. In
this Table, the first column is D, each object has two
columns, one for the datasize and the other for the
modality; the last column is the total content value of
adapted document. Here, Mod means modality and V, /,
A, T mean video, image, audio, text modalities
respectively. We can see that as D° decreases, the
datasizes of the objects are reduced to satisfy the
datasize constraint of the whole document. Also, at
some points, the modalities of the objects are converted
to meet the constraint and to give the highest possible
total content value. ‘

Now we check the performance, including the
processing time and the optimality, of the decision
engine. First we employ optimal algorithm for the
decision engine. The continuous lines in Fig. 4(a) and
Fig. 4(b) show respectively the total content value of

_ the adapted document and the processing time (to find

the optimal solution) versus the different values of D°.
We see that, using optimal algorithm (threshold=0), the
processing time of the decision engine is smaller than
0.5s, which is acceptable to the real-time requirement.
This result is actually due to the fact that there are only
six objects in the document.

Next, to reduce the processing time, we try to apply
the fast algorithm with modified step 1. The “good
thresholds™ are estimated by considering the content
value and the processing time versus different
thresholds, given some fixed values of the datasize
constraint. The dashed lines in Fig. 4(a) and Fig. 4(b)
show the performance of the decision engine using fast
algorithm with threshold = 0.02. Now we can see that
the processing time is much reduced, i.e. below 0.1s
compared to 0.4s of optimal algorithm; meanwhile,
total content value decreases very little.

35

30

° 25
2

® 20
8

£ 15
S

10

5

0

0 1000 2000 3000 4000 5000
datasize consiraint (KBs)
(a
05
threshold = 0

04
&

203
&
o
=

202
g

& 01

o .
0 1000 2000 3000 4000 5000

datasize constraint (KBs)

Fig. 4: Performance comparison of the decision engine
using optimal algorithm & fast algorithm.

- 328 -

2004 st=HEjojc]ofgts| EASSURNE =2 E

In above experiments, there are only six objects in
the document. Now we add some more image objects to
see how the processing time depends on the number of
objects. The datasize of each added image objects is
900KBs. The datasize constraint is now set to be rather
high, D°=5000KBs. Fig. 5 shows the relationship of the
processing time versus the number of objects for
various cases. We have three cases: threshold = 0
(optimal algorithm), threshold = 0.02, and threshold =
0.09 (fast algorithm). We see that when the number of
objects is more than 20, the processing time of the
original algorithm is not quite good (more than 3s), but
the result of the fast approximation algorithm is very
interesting. With threshold=0.09, the processing time
for the document of as many as 30 objects is still below
0.5s.

50
--— threshold=0
ap I threshold=0 02
5 | Loo= threshold=009
)
£ 30
£
i=d
=3
8 20
g
Q .
N
00 7 e T

0 3 6 9 12 15 18 21 24 27 30
number of objects

Fig. 5. Processing time vs. number of objects.

A special point is that the number of objects to be
transcoded in a practical multimedia document is not
many, normally not more than several tens. This is
actually the main reason for the real time support of the
decision engine. Moreover, there are some simple
techniques to reduce the number of objects in a
document, e.g. by analyzing the document or using the
content description, we can discard some less important
objects. In essence, the threshold technique aims at
reducing the number of considered selections by
omitting the “negligible” ones. In practice, the
thresholds can be empirically estimated in advance and
stored as metadata. The number of selections can be
further reduced by various techniques. For example, the
threshold may be adaptive to the slope of content value
function, so as to remove more selections when
possible.

5. CONCLUSION

In this paper, we have presented a systematic approach
to tackle the content adaptation problem. The
mechanism of the decision engine was formulated as a
resource allocation problem. Then Viterbi algorithm of
dynamic programming and an approximation were
employed to optimally allocate resource to different
content objects. The algorithms were shown to be
efficient for accurately adapting multimedia contents to
different constraint values. Furthermore, our
experiments suggested that the Viterbi algorithm and its
approximation could be well applicable for the real-
time requirement of a decision engine. Our future
works will focus on the automation of online
transcoding, in terms of both content scaling and
modality conversion. Also, metadata adaptation will be
explored and deployed.

REFERENCE

(1]. T. C. Thang, Y. M. Ro, “Presentation Priority and
Modality Conversion in MPEG-21 DIA”, Journal
of Broadcasting Engineering, Vol. 8, No. 4,
pp.339-350, Dec. 2003.

[2]- R. Mohan, J. R. Smith, C.-S. Li, “Adapting
Multimedia Internet Content for Universal Access”,
IEEE Trans. Multimedia, Vol. 1, No. 1, pp. 104-
114, Mar. 1999.

[3]. W. Y. Lum and F. C. M. Lau, “A QoS-sensitive
content adaptation system for mobile computing”,
Computer Software and Application Conference,
pp. 680-683, 2002.

[4]. Ortega and K. Ramchandran, “Rate-distortion
methods for image and video compression,” IEEE
Signal Processing Magazine, pp. 23-50, Nov. 1998.

[5]. G. D. Forney, “The Viterbi algorithm,” Proc. IEEE,
vol. 61, pp. 268-278, Mar. 1973,

[6]. A. Ortega, K. Ramchandran and M. Vetterli,
"Optimal trellis-based buffered compression and
fast approximations," I[EEE Trans. Image
Processing, vol. 3, pp. 26-40, Jan. 1994,

Table I: Results of the adapted documents with different values of constraint

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Content
De KBs) D) KBs) Mod D, KBs) Mod D3 (KBs) Mod Dy (KBs) Mod Ds(KBs) Mod Dy (RBs) Mod value
3000 1041 v 260 A 544 I 571 I 576 I 8 T 2830
1000 343 v 90 A 179 I 189 I 191 I 8 T 24.08
300 100 v 30 A 52 I 56 1 57 I 5 T 14.88
200 85 v 26 A 20 A 47 I 21 A 1 T 1138
130 45 I 25 A 19 A 20 A 20 A 1 T 8.47
110 36 I 21 A 17 A 17 A 18 A 1 T 7.59
90 34 I 5 T 16 A 17 A 17 A 1 T 6.61
70 14 A 5 T 16 A 17 A 17 A 1 T 5.61
10 1 T 3 T 1 T 2 T 2 T 1 T

1.27

- 329 -

