Proceedings of the Korean Institute of Intelligent Systems Conference (한국지능시스템학회:학술대회논문집)
- 2004.10a
- /
- Pages.463-466
- /
- 2004
Optimization of Fuzzy Set-based Fuzzy Inference Systems
퍼지 집합 기반 퍼지 추론 시스템의 최적화
Abstract
본 논문에서는 각 입력 변수에 대하여 퍼지 공간을 분할한 퍼지 집합 기반 퍼지 추론 시스템을 제안한다. 퍼지 모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 쥘 필요성이 요구된다. 정보 granules는 근접성, 유사성 또는 기능성 등의 기준에 의해 서로 결합된 물체(특히, 데이터 점)의 연결된 모임으로 간주된다. 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의한 중심71을 이용하여 각 입력 변수에 대한 퍼지 집합 기반 전반부/후반부 구조 및 파라미터를 동정한다. 퍼지 추론 방법은 간략 및 선형 퍼지 추론을 수행하며 삼각형 멤버쉽 함수를 사용한다. 구축된 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정하며, 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀한다. 또한, 제안된 퍼지 모델은 수치적인 예를 통하여 성능을 평가한다.
Keywords