2= 0|28 JHT0M H0H HES)| 948
o0t 3)2°

0143° HRX
BHIAIJONE D EEES&U
{alexwannarun®, chungyj}@hufs.ac.kr

A Boolean Circuit For Finding Maximum Matching
In A Convex Bipartite Graph.

Sunghee Lee® Yoojin Chung
Dept. of Computer Eng, Hankuk Univ. of Foreign Studies

Summary
We’ ve developed a Boolean circuit that finds a maximum matching in a convex bipartite graph. This
circuit is designed in BC language that was created by K. Park and H. Park[1]. The depth of the circuit
is O(log®n - log b) and the size is O(bn®). Our circuit gets a triple representation of a convex bipartite
graph as its input and produces the maximum matching for its output. We developed some Boolean
circuit design technigues that can be used for building other Boolean circuits.

1. Introduction

A convex bipartite graph G is a graph with three sets
(A, B, E) where A and B are sets of vertices and E is
the set of edges. This graph satisfies a following
feature. If (a, b)EE and (a, b EE, then (a;,
A EE, 1=g<k. F € E is a matching in the convex
bipartite graph G if there are no edges that share an
endpoint. F is a maximum matchingin G if (a) Fis a
matching and (b) G contains no matching H such that
{HI > IF| (IH| = number of edges in H). ,

A convex bipartite graph G = (A, B, O), A =
{a;, ..., a,}, B=1{by, ..., by} can be represented
by the set of triples:

T={(i,Si,hi)‘ 1= i< n}

In the triple representation, i stands for index in A
and s; and h; represents smallest and highest index
of vertices in B to which a; is connected,
respectively.

A job scheduling problem with n jobs, each
requiring one unit of processing, can be transformed
into finding a maximum matching in a convex
bipartite graph. Dekel and Sahni[2] developed a
parallel algorithm that finds the maximum matching
that has complexity O(log®n). It is this algorithm that
we implemented in our maximum matching Boolean
circuit.

» "2 dFE FFHEAFADT A=ITAAEAA(2003-041-
D00483) A9 +45HUYL."

952

In chapter 2 of this paper, we will introduce the
BC language, in which our circuit is designed.

Chapter 3 will discuss the internal structure of our
maximum matching circuit. Finally, we will finish this
paper by conclusion.

2. Boolean Circuit Language

A Boolean circuit is composed of inputs, outputs
and logic gates. Wires connect the inputs, outbvuts,
and logic gates. We can show a Boolean circuit 2s a
graph if we take inputs, outputs, and logic gates as
nodes and the wires as edges. Here are the
definitions of the depth and the size of a circuit. The
depth of a circuit is the longest path from an input to
an output. The size of a circuit is the number of
inputs, outputs, and logic gates in it.

P. Park and H. Park[1] developed a programming
language called the BC Language that is similar to
VHDL but more convenient to design parallel
algorithms due to its general iterative and recursive
structures and the ease of modular design..

P. Park and H. Park[1] also introduced a sorting
circuit that has its depth O(log n + log b) and its zize
O(bn®. The basic idea in the sorting circuit is to
rank numbers and send them to the output through a
Boolean circuit component ‘ DEMUX' . We made
full use of the sorting circuit for our circuit that finds
the maximum matching.

20044 = A= B8] B Sk E =3 Vol. 31, No. 1

3. The Maximum Matching Circuit

We' ve divided Dekel. and Sahni’ s parallel
maximum matching algorithm[2] into three parts.
Similarly, our maximum matching circuit has three
main parts. The first part divides the input, the set
of triples T, and places them .into leaves of a
computation tree. The computation is a complete
binary tree that is used for finding the maximum
matching. Let P be any node of the computation
tree. Each node P in the computation tree has a
subset M(P) of A vertices that are available for
matching[2]. The subset M is partitioned into three
different subsets MAXM(P), I(P), and T(P).
MAXM(P) is called the matched set and is a
maximum cardinality subset of M(P) that can be
in B. I(P) denotes the
infeasible set and T(P) is called transferred set.
Dekel and Sahni’ s algorithm makes two passes
over the computation tree. In the first pass
MAXM(P) and T(P) for each vertex in the
computation tree are found. This is the second part
of Dekel and Sahni’ s algorithm. The last part of
this algorithm is the implementation of the second
pass in Dekel and Sahni’ s parallel maximum
matching algorithm. In the second pass, MAXM' (P)
is found for each vertex in the computation tree.

Appropriately, we divide this chapter into three
sections such that, each section explains each part
of our circuit.

matched with vertices

3.1 First Part

In the first part, we sort our input by s; and b
(1<i<n) in the set of triples. Sorting is done using
the sorting circuit[1] with some changes. Instead of
the original Boolean expression used in the sorting
circuit, we use following Boolean expression :

fSi>Sj)V(Si==S,'/\l’1;>l'l,')\/(S;'—"=Sj/\hi==l'1,'/\i>].)

Using the Boolean expression above will sort the
input by s; and h;. Next, we find a set R [2], which
has distinct s; values. Finding distinct values are
simple. Let M(@i) = s (1<i<n) and M(0) = 0. For
every M(i), we compare it with M(i- 1) to see if they
are different. If they are different, M(i) is included in
the set R and not included, otherwise. Comparison is
done using the 2"-bit Comparator[1], which has the
depth of O(k) and the size of O(2%). Comparing M(i)

953

and M(i-1) is done in parallel so the depth of this
function is O(log b) and the size is O(b). Using the
set R, we find u and v for each node of the
computation tree. Every node in the computation
tree has its own u and v values and each value is
used to separate the input. The circuit that performs
the whole procedure of sorting and dividing has the
depth O(log n + log b) and the size O(bn®).

3.2 Second Part — First Pass

Dekel and Sahni introduced a procedure FEAS{3]
that finds the matched set for a node in the
computation tree. FEAS uses an array DONE()
(1<i<n) to find a matching. DONE(i) has the vertex
number of B, to which the vertex a; of A is matched.
Dekel and Sahni obtained an equation for DONE(),
which is defined as follows[3]:

DONE() = ming<j<i{h’ ;+ i- j}, 1<i<n

To implement the equation above, we used an
ADDERI[4] that produces the sum of two integers.
The depth and the size of the ADDER is O(log b) and
O(b), respectively. Since i — j can be computed at
compile time of a synthesis tool of the BC language,
[11 we only need an addition operation. h'; = min{h;,
v}[2]. Let DONE(O) = u - 1. For all DONE()
(1<i<n), if DONE(-1) <> DONE(), then a; is
included in the matched set MAXM. If DONE(i-1) ==
DONE() and h; > v[2], then a; is included in the
transferred set T. Comparing DONE(-1) and
DONE(i) takes the depth of O(log b) and the size of
o).

For the leaves of the computation tree, we run
FEAS directly. The Boolean circuit for FEAS has the
depth of O(log n * log b) and the size of O(bn®). For a
non-leaf node, MAXM and T is obtained from its
children. Let L and R be the left and the right child
of a node P. Let S be the matched set of M(P) after
the execution of FEAS with T(L) U MAXM(R). Then
MAXM(P) = MAXM(L) U S [2]. To merge MAXM(L)
and S, we designed a component MERGE. The basic
idea of merging two sets in a Boolean circuit is to
put the two sets together without any loss and sort
them. After the sorting, we cut half of the merged
set because they are unnecessary. For example,
assume that we merge MAXM(L) and S. | MAXM(Q.)!
= n and S| = n. Since, the maximum number of
MAXM(L) and S is n, they almost always contain so
called ‘ garbage number’ , which are unnecessary
numbers but have to be included because of the
features of the Boolean circuit. (Usually, the garbage
numbers are zeroes.) Let H be the merged set of
MAXM(L) and S. Then [H| = 2n. It is guaranteed
that at least n number of elements in H are garbage

20044 & =R w33 8 el E = Vol. 31, No. 1

numbers. The depth of MERGE is O(log n + log b)
and the size is O(bn?).

The first pass of Dekel and Sahni’ s parallel
maximum matching algorithm begins at leaves and
moves upward to the leaves. Since the depth of the
computation tree is O(log n) and at each depth, we
run FEAS and MERGE in parallel, the depth of the
first nass is O(log®n - log b) and the size is O(bn®).

3.3 Third Part — Second Pass

In the second pass, we find MAXM' (P) for each
node of the computation tree. MAXM' (P) is the
final matched set that will appear as an output of the
circuit. This pass starts at the root and moves
downward to the leaves.

If P is the root node, then MAXM’ (P) = MAXM(P).
Let P be any non-leaf node for which MAXM’ (P)
has been computed. Let L and R be the left and right
children, respectively. Let V.= {j | j € MAXM' (P)
and s; < vp}. Let W be the ordered set obtained by
merging together V and MAXM(L). MAXM (L)
consists of the first min {I{W|, vp — u. + 1} vertices
in Wi2}. MAXM' (R) = MAXM' (P)- MAXM' (L).

Hence, we made a component that finds the set V
and also a component for performing the subtraction
of two sets. When merging V and MAXM(L), some
elements may coincide. Therefore, we need to sort
them by i (Remember that the input is the set of
triples T = {i, s, h}) and we need to cast off
elem=nts with same i. Finding the set V, merging
MAXM(L) and V, and subtracting MAXM’ (L) from
MAXM' (P) has the depth of O(log n + log b) and
the size of O(bn?). Therefore, the depth of the
secord pass is O(log®n) and the size is O(bn®).

After the second pass, we obtain the matched set
of the convex bipartite graph. As we can see, the
total depth of the maximum matching circuit is
O(log2n * log b) and the size is O(bn®).

4. Conclusion

Although the Boolean circuit is simple and realistic,
not many algorithms have been developed because
of its awkwardness of programming. The BC
language made it easy to design the Boolean circuit.
Still, it is true that there are many restrictions and
limitations for developing algorithms for the Boolean
circuit. We hope that our circuit will contribute to
the developing of other Boolean circuits, We are
now searching for a way to make our circuit more
simple.

954

References
[1] K. Park and H. Park, Boolean Circuit
Programming : A New Paradigm to Design Parallel
Algorithms,
[2] Dekel; E. and Sahni, S. A Parallel Matching
Algorithm for Convex Bipartite Graphs and

Applications to Scheduling, Journal Of Parallel And
Distributed Computing 1, 185-205 (1984).

[3] Dekel, E., and Sahni, S. Parallel scheduling
algorithms. Oper. Res. 31, 1 (1984), 24-49.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest,
Introduction to Algorithms, MIT Press 1990.

