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ABSTRACT

In this paper, we analyze

Pseudo-Noise

(PN) sequences generated by a 90/150

maximum-length Null Boundary Cellular Automata.
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| . Introduction

Cellular Automata(CA) was first introduced by
Von Neumann [1] for modeling biological
self-reproduction. Wolfram [2] pioneered the
investigation of CA as mathematical models for
self-organizing statistical systems and suggested
the use of a simple two-state, three
-neighborhood CA with cells arranged linearly in
one dimension. Das et al. {3] developed a matrix
algebraic tool capable of characterizing CA. CA
have been employed in several applications ([4],
(5] [6)). Cho et al (7], [8], [9) [10], [11])
analyzed CA to study hash function, data
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storage, cryptography and so on.

In this paper, we analyze PN sequences
generated by a 90/150 maximum-length Null
Boundary CA(NBCA).

II. Definitions and Preliminaries

Definition 2.1 [10] A CA is called a group CA
if detf(T)=1, where
matrix for the CA.

Group CA can be classified into maximum-
and  minimum-length CA. An n-cell
maximum-length CA is characterized by the

T is the characteristic

presenice of a cycle of length (2 ”—1) with all
nonzero states. Moreover, the characteristic
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polynomial of such a CA is primitive. A
primitive polynomial p(x) of degree » is an
irreducible polynomial such that min{#: p(x)|
x"+1}=2"-1.
Definition 22 [13]
Coox" 1 4x" be an n-degree primitive
polynomial, c;€{0,1}. Then Ax)
generates a periodic sequence whose period is

Any=1+cx+-+

where

2 "=1. This sequence is called a Pseudo-Noise
(PN) sequence.

Definition 2.3 Consider an #-degree primitive
Ay=1+cx+-+

Cc;E {0, 1} Let

polynomial
-1
Cpox” "+x",  where

f‘(x)zx”ﬂ'}l;). Then f*(x) is called the
reciprocal polynomial of A x).

Definition 24 A CA is said to be a Null
Boundary CA(NBCA) if the left (right)
neighborhood of the leftmost (rightmost)
terminal cell is connected to logic O-state.

ll. Analysis of PN Sequences Generated
by a 90/150 NBCA

In this section, a few theoretical results have
been developed based on matrices consisting of
PN sequences as their columns. And we give the

relationship between 0, and O,, where O,
and O, are the minimum offsets for an #
-degree primitive polynomial and its reciprocal
polynomial, respectively.

Consider an #-degree primitive polynomial
A)=1+cx+ - +c,_,x" '+ 2" where

c;€{0,1}. Ax) generates a  periodic
sequencce whose period is 2”—1. This
sequence is a PN sequence. Since f(x) is

primitive, the reciprocal polynomial f*(x) of
Ax) is also an #n-degree primitive polynomial.
And thus the period of the sequence generated

by f*'(x) is 2"—1.

Definition 3.1 In the Galois field Fy= {0,1}
let the sequence {s} satisfy the homogeneous
linear recurrence relation

Sten=CoS; T C 1Syt F CuiiSiian

(¢=0,1,2,-), (C()y C1, -, Cn—leFZ)

Then A x) is said to be the characteristic

polynomial of {s .
Let Q(f(x)) be the set of all sequences {s,}

which have Ax) as the characteristic
polynomial. Thus
Q(Ax)) 1
"
= {s,lan: ;0 ¢S £=0,1,2, }
Given an arbitrary sequence Sg, Sy, "t of

elements of K3, we associate with it its
generating function, which is a purely formal
expression of the type

G(x) =sg+s xtsgxlidts,x+

o0

= Eer ©
with an indeterminate x.
Lemma 32 [12] Let {sJ)=R(Ax)), Ilet

(%) be the
polynomial of Ax) and G(x) be its generating
function in (*). Then the identity

reciprocal  characteristic

Gy =&
D=7
hold with

k=1 .
glx)= - ;‘Zo Zocﬁk—isr'x],
where we set ¢,= —1,

The following theorem is very important to
study PN sequences.
Theorem 3.3 Let

primitive polynomial. Also let

Ax) is an n-degree
{s } = 2(Ax)

and s(x)=so+sx+Fs5,.277! where

r=27"—1. Let {#} be the cyclic sequence
such that #(x)(: =wuy+twu x+-+u,_x"h
=s"(x). Then {zu }e2(f"(x).

Consider a (2 "—1)xn matrix A consisting
of n independent maximum-length sequences
generated by an »-degree primitive polynomial
as its columns. A matrix A corresponding to
x%+x+1 is shown in Figure 1.(a). Any column
of this matrix is a PN sequence generated by the
CA C having x*4x+1 as its characteristic
polynomial. In fact the rule of C is <90, 150, 90,
150>. Thus the state-transition matrix 7" of C is

01060
1110
0101
0011
Now, consider a (2%—1)x(%—1) matrix
obtained by deleting only one of the columns of

T=
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A. Such a reduced matrix is referred to as
matrix B {Figure 1.(b),(b’)] in the subsequent
discussions. Without loss of generality, let only

the all-zeros (»—1) -tuple appear as the first

row of B.

0001 000 0001 000
0011 001 0011 001
0110 011 0100 010
1011 101 1010 101
0010 001 1011 101
0101 010 1000 100
1101 110 1100 110
1001 100 0110 011
0111 011 1101 110
1000 100 0101 010
0100 010 1001 100
1110 111 1111 111
1111 111 0010 001
1100 110 0111 011
1010 101 1110 111

@ ® @ ®)

Figure 1 : A matrix (a) (resp. (a')) and B
matrix (b) (resp. (b')) corresponding
o x4+x+1 (resp. x*+x3+1)

Definition 3.4 [3] Range: The range of an
(n—1) -tuple vector (say B,, 0=r<2"-2)

in a B matrix is defined as the minimum span
in B (starting with B,) in which all of the
(n—1) -tuple (including the all-zeros tuple)
appear at least once. Offset: The distance 7 of
an (n—1)-tuple (say B,) in a B matrix, in
terms of the number of row vectors from the
all-zeros (n—1) -tuple, is defined as the offset
of the (n—1) -tuple.

The range and the offset of the 3-tuple row
vector <110> in row 7 of the B matrix of Figure
1.(b) are 11 and 6, respectively.

Definition 3.5 [3] Minimum Range: minimum
range of a B matrix is defined as the minimum
of all the ranges associated with vectors in B.
Minimum Offset: Minimum offset in a B matrix
is defined as the offset of the particular (n—1)
-tuple associated with the minimum range.

Lemma 3.6 [3] The minimum range and
minimum offset remain invariant with respect to

the choice of any B matrix generated out of the

A matrix, corresponding to the same #-degree
primitive polynomial.
Since rank(B)=n—1, we can reduce B to

the following (2"—1)x(n—1) matrix by
elementary column operation,
0
c=\I n—1
Q

where { is the all-zero (n—1) -tuple, {,_;
is the (n—1)x(n—1) identity matrix and @
isa (2"—n—1)x(n—1) nonzero matrix.

Theorem 3.7 Let T be the characteristic
n~cell 90/150 NBCA whose
n-degree

matrix of an
characteristic  polynomial is an
primitive polynomial A x). Then there exists p
(1< p<27"—2) such that

1.eT=T"

Corollary 38 Let 7T be the characteristic

matrix of an #-cell 90/150 NBCA whose

characteristic polynomial is an  #n-degree
primitive polynomial. Then there exists &
(1< k<2 "—2) such that

T*RT* =1,

Corollary 3.9 Let T be the characteristic
n-cell 90/150 NBCA whose
n-degree
primitive polynomial. For nonzero states a, &
such that a® b= (0,0,+,0,1) ", there exists a
k(1< k<2 7"—2) such that

T*0,0,-,0,1) '=a and

T*10,0,,0,1) '=5

Lemma 3.10 Let T be the characteristic matrix
of an n-cell 90/150 NBCA whose characteristic
polynomial is an #-degree primitive polynomial.

matrix of an

characteristic  polynomial is an

And let f*(x) be the reciprocal polynomial of
Ax) and T’ be the characteristic matrix of the
n-cell 90/150 NBCA obtained from f*(x) by
the method in [14]. For some & (1< £<27%—2)
that T*OTH*1=1,, let

T'*®T **'=1, Then k' =2"—k—2.
Theorem 311 The  minimum  range
corresponding to a primitive polynomial and that
corresponding to its reciprocal polynomial are
equal.
Theorem 312 If O,
minimum offsets for an #n-degree primitive

such

and O, are the
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polynomial and its reciprocal polynomial,

respectively, and d is the minimum range in
both case. Let |0A |=a |A,00=b|B,0=y.
Then the following hold:
0,+0,=2@2"-D~b—y.
Corollary 313 If O,

minimum offsets for an
and its

and O are the
n-degree primitive
polynomial reciprocal  polynomial,
respectively, and ¢ is the minimum range in
both I0A || =a)#|A,0(: =b),
|IBi{Ol=y. Then O,+0,#2"~1+|A B\l

Corollary 314 If O, and O, are the

minimum offsets for an #n-degree primitive
polynomial and its reciprocal polynomial,

case. Let

respectively, and ¢ is the minimum range in
both  case.  Let [OA ||=1A 30,  Then
02=2(2 n_1)~(01+d)+1,

IvV. Conclusion

In this paper, we analyzed PN sequences
generated by a 90/150 NBCA  whose
characteristic  polynomial is a  primitive
polynomial. and we give the relationship among
offsets O such that the minimum offset Oy is

from the A, matrix
polynomial is the

whose
primitive

obtained
characteristic

polynomial A(x) and O, is obtained from the
Aj; matrix whose characteristic polynomial is

the reciprocal polynomial of A'x). This analysis
is helpful to study for the pattern generation,
cryptography and so on.
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