Analysis of Sequences Generated by 90/150 maximum-length NBCA¹)

Sung-Jin Cho*, Seok-Tae Kim*, Han-Doo Kim**, Un-Sook Choi***,

Seong-Hun Heo*, Yoon-Hee Hwang* and Sung-Ga Lee*

*Pukyong National University, **Inje University, ***Youngsan University

최대길이를 갖는 90/150 NBCA에 의해서 생성되는 수열의 분석*

조성진*, 김석대*, 김한두**, 최언숙***, 허성훈*, 황윤희*, 이성가*
*부경대학교, **인제대학교, ***영산대학교

E-mail: sjcho@pknu.ac.kr

ABSTRACT

In this paper, we analyze Pseudo-Noise (PN) sequences generated by a 90/150 maximum-length Null Boundary Cellular Automata.

요 약

본 논문에서는 90/150 NBCA에 의해서 생성되는 PN 수열을 분석한다.

Keyword

Cellular Automata, Pseudo-Noise sequences, primitive polynomials, ranges, offsets, reciprocal polynomials, characteristic polynomials.

I. Introduction

Cellular Automata(CA) was first introduced by Von Neumann [1] for modeling biological self-reproduction. Wolfram [2] pioneered the investigation of CA as mathematical models for self-organizing statistical systems and suggested the use of a simple two-state, three -neighborhood CA with cells arranged linearly in one dimension. Das et al. [3] developed a matrix algebraic tool capable of characterizing CA. CA have been employed in several applications ([4], [5], [6]). Cho et al. ([7], [8], [9], [10], [11]) analyzed CA to study hash function, data

storage, cryptography and so on.

In this paper, we analyze PN sequences generated by a 90/150 maximum-length Null Boundary CA(NBCA).

11. Definitions and Preliminaries

Definition 2.1 [10] A CA is called a group CA if det(T) = 1, where T is the characteristic matrix for the CA.

Group CA can be classified into maximumand minimum-length CA. An n-cell maximum-length CA is characterized by the presence of a cycle of length (2^n-1) with all nonzero states. Moreover, the characteristic

¹⁾ This work was supported by IITA: 03-fundamental -0047

polynomial of such a CA is primitive. A primitive polynomial p(x) of degree n is an irreducible polynomial such that $\min\{m: p(x) | x^m + 1\} = 2^n - 1$.

Definition 2.2 [13] $f(x) = 1 + c_1 x + \cdots + c_{n-1} x^{n-1} + x^n$ be an n-degree primitive polynomial, where $c_i \in \{0,1\}$. Then f(x) generates a periodic sequence whose period is $2^n - 1$. This sequence is called a Pseudo-Noise (PN) sequence.

Definition 2.3 Consider an n-degree primitive polynomial $f(x) = 1 + c_1 x + \cdots + c_{n-1} x^{n-1} + x^n$, where $c_i \in \{0, 1\}$. Let $f^*(x) = x^n f(\frac{1}{x})$. Then $f^*(x)$ is called the reciprocal polynomial of f(x).

Definition 2.4 A CA is said to be a Null Boundary CA(NBCA) if the left (right) neighborhood of the leftmost (rightmost) terminal cell is connected to logic 0-state.

III. Analysis of PN Sequences Generated by a 90/150 NBCA

In this section, a few theoretical results have been developed based on matrices consisting of PN sequences as their columns. And we give the relationship between O_1 and O_2 , where O_1 and O_2 are the minimum offsets for an n-degree primitive polynomial and its reciprocal polynomial, respectively.

Consider an n-degree primitive polynomial $f(x) = 1 + c_1 x + \dots + c_{n-1} x^{n-1} + x^n$, where $c_i \in \{0,1\}$. f(x) generates a periodic sequence whose period is 2^n-1 . This sequence is a PN sequence. Since f(x) is primitive, the reciprocal polynomial $f^*(x)$ of f(x) is also an n-degree primitive polynomial. And thus the period of the sequence generated by $f^*(x)$ is 2^n-1 .

Definition 3.1 In the Galois field $F_2 = \{0, 1\}$ let the sequence $\{s_i\}$ satisfy the homogeneous linear recurrence relation

$$s_{t+n} = c_0 s_t + c_1 s_{t+1} + \dots + c_{n-1} s_{t+n-1}$$

 $(t=0, 1, 2, \dots), (c_0, c_1, \dots', c_{n-1} \in F_2)$

Then f(x) is said to be the characteristic

polynomial of $\{s_t\}$.

Let $\Omega(f(x))$ be the set of all sequences $\{s_i\}$ which have f(x) as the characteristic polynomial. Thus

$$\Omega(f(x)) = \left\{ s_{t} | s_{t+n} = \sum_{i=0}^{n-1} c_{i} s_{t+i}, t = 0, 1, 2, \dots \right\}$$

Given an arbitrary sequence s_0, s_1, \cdots of elements of F_2 , we associate with it its generating function, which is a purely formal expression of the type

$$G(x) = s_0 + s_1 x + s_2 x^2 + \dots + s_n x^n + \dots$$

= $\sum_{i=0}^{\infty} s_i x^i$ (*)

with an indeterminate x.

Lemma 3.2 [12] Let $\{s_i\} \in \mathcal{Q}(f(x))$, let $f^*(x)$ be the reciprocal characteristic polynomial of f(x) and G(x) be its generating function in (*). Then the identity

$$G(x) = \frac{g(x)}{f^*(x)}$$

hold with

$$g(x) = -\sum_{j=0}^{k-1} \sum_{i=0}^{j} c_{i+k-j} s_{j} x^{j}$$

where we set $c_k = -1$.

The following theorem is very important to study PN sequences.

Theorem 3.3 Let f(x) is an n-degree primitive polynomial. Also let $\{s_t\} \in \mathcal{Q}(f(x))$ and $s(x) = s_0 + s_1 x + \dots + s_{r-1} x^{r-1}$ where $r = 2^n - 1$. Let $\{u_t\}$ be the cyclic sequence such that $u(x)(:=u_0 + u_1 x + \dots + u_{r-1} x^{r-1})$ $= s^*(x)$. Then $\{u_t\} \in \mathcal{Q}(f^*(x))$.

Consider a $(2^n-1)\times n$ matrix A consisting of n independent maximum-length sequences generated by an n-degree primitive polynomial as its columns. A matrix A corresponding to x^4+x+1 is shown in Figure 1.(a). Any column of this matrix is a PN sequence generated by the CA C having x^4+x+1 as its characteristic polynomial. In fact the rule of C is <90, 150, 90, 150>. Thus the state-transition matrix T of C is

$$T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Now, consider a $(2^n-1)\times(n-1)$ matrix obtained by deleting only one of the columns of

A. Such a reduced matrix is referred to as matrix B [Figure 1.(b),(b')] in the subsequent discussions. Without loss of generality, let only the all-zeros (n-1)-tuple appear as the first row of B.

0001	000	0001	000
0011	001	0011	001
0110	011	0100	010
1011	101	1010	101
0010	001	1011	101
0101	010	1000	100
1101	110	1100	110
1001	100	0110	011
0111	011	1101	110
1000	100	0101	010
0100	010	1001	100
1110	111	1111	111
1111	111	0010	001
1100	110	0111	011
1010	101	1110	111
(a)	(b)	(a')	(b')
0100 1110 1111 1100 1010	010 111 111 110 101	1001 1111 0010 0111 1110	(

Figure 1: A matrix (a) (resp. (a')) and B matrix (b) (resp. (b')) corresponding to x^4+x+1 (resp. x^4+x^3+1)

Definition 3.4 [3] Range: The range of an (n-1)-tuple vector (say B_r , $0 \le r \le 2^n - 2$) in a B matrix is defined as the minimum span in B (starting with B_r) in which all of the (n-1)-tuple (including the all-zeros tuple) appear at least once. Offset: The distance r of an (n-1)-tuple (say B_r) in a B matrix, in terms of the number of row vectors from the all-zeros (n-1)-tuple, is defined as the offset of the (n-1)-tuple.

The range and the offset of the 3-tuple row vector <110> in row 7 of the B matrix of Figure 1.(b) are 11 and 6, respectively.

Definition 3.5 [3] Minimum Range: minimum range of a B matrix is defined as the minimum of all the ranges associated with vectors in B. Minimum Offset: Minimum offset in a B matrix is defined as the offset of the particular (n-1)-tuple associated with the minimum range.

Lemma 3.6 [3] The minimum range and minimum offset remain invariant with respect to the choice of any B matrix generated out of the

A matrix, corresponding to the same n-degree primitive polynomial.

Since rank(B) = n - 1, we can reduce B to the following $(2^{n} - 1) \times (n - 1)$ matrix by elementary column operation,

$$C = \begin{pmatrix} 0 \\ I_{n-1} \\ Q \end{pmatrix}$$

where 0 is the all-zero (n-1)-tuple, I_{n-1} is the $(n-1)\times(n-1)$ identity matrix and Q is a $(2^n-n-1)\times(n-1)$ nonzero matrix.

Theorem 3.7 Let T be the characteristic matrix of an n-cell 90/150 NBCA whose characteristic polynomial is an n-degree primitive polynomial f(x). Then there exists p $(1 \le p \le 2^n - 2)$ such that

$$I \oplus T = T^{\flat}$$

Corollary 3.8 Let T be the characteristic matrix of an n-cell 90/150 NBCA whose characteristic polynomial is an n-degree primitive polynomial. Then there exists k $(1 \le k \le 2^n - 2)$ such that

$$T^k \oplus T^{k+1} = I_{*}$$

Corollary 3.9 Let T be the characteristic matrix of an n-cell 90/150 NBCA whose characteristic polynomial is an n-degree primitive polynomial. For nonzero states a, b such that $a \oplus b = (0, 0, \dots, 0, 1)^t$, there exists a $k \ (1 \le k \le 2^n - 2)$ such that

$$T^{k}(0,0,\dots,0,1) = a$$
 and $T^{k+1}(0,0,\dots,0,1) = b$

Lemma 3.10 Let T be the characteristic matrix of an n-cell 90/150 NBCA whose characteristic polynomial is an n-degree primitive polynomial. And let $f^*(x)$ be the reciprocal polynomial of f(x) and T' be the characteristic matrix of the n-cell 90/150 NBCA obtained from $f^*(x)$ by the method in [14]. For some k ($1 \le k \le 2^n - 2$) such that $T^k \oplus T^{k+1} = I_n$, let $T'^k \oplus T'^{k'+1} = I_n$. Then $k' = 2^n - k - 2$.

Theorem 3.11 The minimum range corresponding to a primitive polynomial and that corresponding to its reciprocal polynomial are equal.

Theorem 3.12 If O_1 and O_2 are the minimum offsets for an n-degree primitive

polynomial and its reciprocal polynomial, respectively, and d is the minimum range in both case. Let $|OA_1| = a$, $|A_2O| = b$, $|B_1O| = y$. Then the following hold:

$$O_1 + O_2 = 2(2^n - 1) - b - y$$
.

Corollary 3.13 If O_1 and O_2 are the minimum offsets for an n-degree primitive polynomial and its reciprocal polynomial, respectively, and d is the minimum range in both case. Let $|OA_1|(:=a) \neq |A_2O|(:=b)$, $|B_1O| = y$. Then $O_1 + O_2 \neq 2^n - 1 + |A_1B_1|$.

Corollary 3.14 If O_1 and O_2 are the minimum offsets for an n-degree primitive polynomial and its reciprocal polynomial, respectively, and d is the minimum range in both case. Let $|OA_1| = |A_2O|$. Then $O_2 = 2(2^n - 1) - (O_1 + d) + 1$.

IV. Conclusion

In this paper, we analyzed PN sequences by a 90/150 NBCA polynomial characteristic is а primitive polynomial. and we give the relationship among offsets O such that the minimum offset O_1 is A_1 obtained from the matrix whose characteristic polynomial is the primitive polynomial f(x) and O_2 is obtained from the A2 matrix whose characteristic polynomial is the reciprocal polynomial of f(x). This analysis is helpful to study for the pattern generation, cryptography and so on.

References

- J. Von Neumann, The Theory of Self-reproducing Automata, A.W. Burks ed.(Univ. of Illinois Press, Urbana and London), 1966.
- [2] S. Wolfram, Statistical Mechanics of Cellular Automata, Rev. Mod. Phys., Vol. 55, pp.

- 601-644, 1983.
- [3] A.K. Das and P.P. Chaudhuri, Vector space theoretic analysis of additive cellular automata and its application for pseudoexhaustive test pattern generation, IEEE Trans. Comput., Vol. 42, pp. 340-352, 1993.
- [4] P.H. Bardell, Analysis of cellular automata used as pseudorandom pattern generators, Proc. IEEE int. Test. Conf., pp. 762-767, 1990.
- [5] S. Nandi and P.P. Chaudhuri, Analysis of periodic and intermediate boundary 90/150 cellular automata, IEEE Trans. Computers, Vol. 45, No. 1, pp. 1-12, 1966.
- [6] A. Swiecjcka and F. Seredynski, Cellular automata approach to scheduling problem, Proc. Internat. Conf. Parallel Comput. Electrical Engineering, pp. 29-33, 2000.
- [7] S.J. Cho, U.S. Choi and H.D. Kim, Analysis of complement CA derived from a linear TPMACA, Computers and Mathematics with Applications, Vol. 45, pp. 689-698, 2003.
- [8] S.J. Cho, U.S. Choi and H.D. Kim, Behavior of complemented CA whose complement vector is acyclic in a linear TPMACA, Mathematical and Computer Modelling, Vol. 36, pp. 979-986, 2002.
- [9] K. Cattell and Jon C. Muzio, Analysis of one-dimensional linear hybrid cellular automata over GF(q), IEEE Trans. Comput., Vol. 45 No. 7, pp.782-792, 1996.
- [10] S. Nandi, B.K.Kar and P.P. Chaudhuri, Theory and applications of cellular automata in cryptography, IEEE Trans. Computers, Vol. 43, pp. 1346-1357, 1944.
- [11] M. Serra, T. Slater, J.C. Muzio and D.M. Miller, The analysis of one dimensional linear cellular automata and their aliasing properties, IEEE Trans Computer-Aided Design, Vol. 9, pp. 767-778, 1990.
- [12] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1997.
- [13] S. W. Golomb, Shift Register Sequences, Holden Day, 1967.
- [14] S. Tezuka and M. Fushimi, A method of designing cellular automata as pseudo random number generators for built-in self-test for VLSI, Comtemporary Mathematica, Vol. 168, pp. 363-367, 1994.