3X Serial GF(2m) Multiplier on Polynomial Basis Finite Field

Polynomial basis 방식의 3배속 직렬 유한체 곱셈기

  • 문상국 (목원대학교 정보전자공학부)
  • Published : 2004.05.01

Abstract

Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only Partial-sum block in the hardware.

정보 보호 응용에 새로운 이슈가 되고 있는 ECC 공개키 암호 알고리즘은 유한체 차원에서의 효율적인 연산처리가 중요하다. 직렬 유한체 곱셈기의 근간은 Mastrovito의 직렬 곱셈기에서 유래한다. 본 논문에서는 polynomial basis 방식을 적용하고 식을 유도하여 Mastovito의 직렬 유한체 곱셈방식의 3배 성능을 보이는 유한체 곱셈기를 제안하고, HDL로 기술하여 기능을 검증하고 성능을 평가한다. 설계된 3배속 직렬 유한체 곱셈기는 부분합을 생성하는 회로의 추가만으로 기존 직렬 곱셈기의 3배의 성능을 보여주었다.

Keywords