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Simulation of crack propagation of concrete with the DIANA
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ABSTRACT

This paper discusses 2D lattice models of beams for simulating the fracture of brittle materials. A
simulation of an experiment on a concrete beam subjected to bending, in which two overlapping cracks
occur, is used to study the effect of individual beam characteristics and different arrangements of the
beams in the overall lattice.

It was found that any regular orientation of the beams influences the resulting crack pattems. Methods
to implement a wide range of poisson’s ratios are also developed, the use of the lattice to study
arbitrary micro-structures is outlined The crack pattemn that are obtained with lattice are in good
agreement with the experimental results. Also, numerical simulations of the tests were performed by
means of a lattice model, and non-integer dimensions were measured on the predicted lattice damage
pattermns.

1. Introduction

Since concrete is a highly heterogeneous material and concrete cracking is a localized phenomenon
(resulting in stress redistributions during cracking), the implementation of concrete cracking into finite
element codes is not straightforward, Iterative calculation techniques have to be adopted for correct
predictions of the highly non-linear material behavior. In this respect two main approaches to modeling
concrete can be distinguished, namely by contimmum or discrete methods. When a contimum model is
adopted for "predicting” fracture processes in concrete, the macro-level is usually chosen as the level of
modelling. Consequence of this choice is that the constitutive relation in the model is mostly non-linear.
When, on the other hand, the material’s micro-level is addressed, and the material is treated as three
phase material (aggregate, matrix and interface between matrix and aggregates), a brittle constitutive
relation seems satisfactory. In spite of the individual elastic-brittle behavior of the material constituents,
non-linearity will be observed at the macro-level. In the model presented in this paper, the second
(discrete or lattice) approach is used for modelling concrete cracking at the meso-level. In such a model
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the material is discretized by a network of beams or trusses, and cracking is modelled by removing a
beam from the mesh. Through the years, considerable attention has been given to lattice models. Lattice
type models were first developed in theoretical physics. Then, Fracture in disordered materials, the model
has been applied for simulating percolation problem and electrical conductivity in a lattice. The original
model proposed by Herrmann incorporated a regular square lattice illustrated in Fig. la. For simulating
concrete fracture the regular triangular lattice (Fig. 1b) was proposed by Schlangen & Van Mier is
original. A random lattice, proposed by Moukarzel & Herrmann, has been used for similar purposes. In
this random lattice, the connectivities of the beams are determined by the Voronoi construction of a set
of nodes. The random lattice is illustrated in Fig.lc. Most of the simulations of concrete fracture
presented in this paper were carried out with the regular triangular lattice that was mentioned before.
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Fig.1 Lattice types: regular square lattice (a), regular triangular lattice (b) and random lattice(c)

2. Principle of the Lattice Model

In the adopted lattice model integrated beam elements with three degrees of freedom are directly
used. The constitutive relation of an element is linear-elastic, and the stress in an element is calculated
as a combination of the normal force and the bending moments acting on the element. This "effective”
stress causes failure as soon as the strength of the beam element is exceeded. Because of the
linear-elastic behavior of the lattice, the failure load of a beam is calculated within a single step of a
finite element analysis. This procedure of loading the mesh and consequently removing an element is
repeated until complete failure of the lattice has been obtained. In order to reduce the computational
effort, generally only the area of the specimen where cracks are expected to grow, is modelled with a
lattice. The remainder of the specimen is modelled with continuum elements. The simulations presented
in this paper are carried out with the finite element package DIANA, mainly because of the availability
of several types of continuum elements besides the beam elements required for the lattice. At the
boundary between lattice contimmim elements, the beam nodes are tired to the nodes of the contimmm
elements. In order to reduce the computer time, the lattice model is currently being implemented as a
"special” module in the DIANA finite element code. Although each individual element in a lattice fails
brittle, the(global) softening behavior of heterogenous materials like concrete can be simulated with the
model. When a regular lattice(Fig. 1b) is used, heterogeneity has to be implemented in the model in
order to obtain realistic crack patterns observed in concrete experiments. Heterogeneity is introduced by
varying the Young's modulus and the strength of the beam elements. Considering the material structure
of concrete, a realistic strength and stiffness distribution strength and stiffness of the distinctive phase
are assigned to the beams falling inside the aggregates (A), in the matrix (M) or at the interfacial zone
between the aggregate and the matrix (bond, B)
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Fig. 2 Aggregate structure prajected on top of a lattice (a) and assigning properties to the beam in the
three phases of the material (b)

3. Parameter determination

To describe the global elastic behaviar of the lattice, the Young’s modulus(E) and Poisson’s ratio (v)
of the material which is to be modelled are available as inout. They have to correspond to the global
behavior of the lattice, which can be adjusted by changing the geometrical properties (height h and
thickness t) and the global Young’s modulus of the beams (Ebeam). For two dimensional simulations, it
seems obvious to choose the beam thickness equal to the thickness of the simulated specimen. When a
regular lattice is adopted, the remaining beam properties (h and Epeam) can be determined in a very
straight forward manner, since the Poisson’s ratio of the lattice is directly related to the height over
length ratio of the beams. For a regular triangular lattice without particle overlay and consisting of
prismatic beams it was found that:
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This function is shown graphically in Fig. 3, with the results for the lattice with varying Pk(the ratio of
the aggregate volume to the total volume of the concrete). The Poisson’s ratios for the lattices given in
Fig. 3a are the average values resulting from calculations on 175 meshes measuring 50X50 nodes. When
the height of the beams is fixed, the local Young's modulus of the beams(Ebean) can be determined from
the global stiffness of the lattice, which has to be coincided with the stiffness of the material that is
modelled. In Fig.3b the relation between the ratios E/Foeam and h/s is shown by the five different value
of the A. The stiffness of the lattice can be varied by changing the Young’s modulus of the beams. The
values of the ratios, however, must be kept constant in order to maintain a linear relation between E
and Epeam.
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Fig.3 Relation between v and Wlag for a regular triangular lattice with varying Px
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Then the parameter related to the global elastic behavior of the mesh, parameters related to the fracture
law is required. Cracking is obtained by removing one beam from the mesh in each step of a lattice
analysis. The choice of the beam is based on a very simple fracture law and the "effective” stress f is
calculated following:

for = B - (%%—a'—lyﬁ%!m") < Sy

where F is the normal force in the beam, A is the cross sectional area, Mi and M; are the moments in
the two respective nodes of the beam and W=1/6+b +h’ is the sectional moment of the beam Fig4a
shows that the bond fraction approaches an asymptotic value with increasing beam length. At a certain
moment only the largest particles are persent in the mesh. The number of such large-sized particles is
limited in the fuller distribution that was used. Fig4b shows that the force that can be carried by the
global lattice hardly varies with beam length. This indicates that, for the present example with Px = 0.75,
failure is governed by the weakest elements, ie. the bond beams, will become clear further on. In the
Fig.4c the phase fractions are shown for aggregate sizes 25mm for varying Py values.
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Fig4 Phase fractions of bond, matrix and aggregate beams as a function of beam length (a), and
fraction of bond, matrix and aggregate phases with varying Px (b)
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Fig. 5 Modelling of cement based concrete with varying Px values
4. Application of the Lattice Model
In order to apply to the lattice model, the model has been used for simulating test. Main purpose of

these calculations was to validate the model by means of comparing the numerical results to those of
experiments. A lattice simulations of a bending test show another influence on the tail of the softening

curve, now depending on the maximum aggregate size however(Fig. 6).
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| S= 80cm |

L= 85cm
Fig. 6 Three—point bending specimen and lattice analysis modelling
To get insight in the behaviour of these different lattice types a comparison was made by simulating the

behaviour of a single notched specimen under three point bending test. The area of the specimen that
was used to control the deformations in the laboratory test, was modelled with three different lattices,
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denoted Type A to C in Table 1.

Table 1. Overview of the lattice types compared in a bending test.

lattice type abbreviation
Triangular lattice with particle structure TYPE A
(Number of node and element 672, 1283)
Triangular lattice with particle structure TYPE B
{Number of node and element 2542, 4966)
Triangular lattice with particle structure TYPE C

(Number of node and element 10004, 19772)

In Fig. 7(a)~ () the cracks in the lattice part of the specimen are shown at almost the same crack
mouth opening displacement(CMOD). Beacuse of the presence of a grain overlay in the mesh,
micro-cracks develop in the bond zones around the grains, apart from the continuous cracks in the
cement matrix. Since this mechanism resembles the actual fracture process in concrete, TYPE B seems
most suitable for modelling this material.

Fig. 7. Simulation of a bending test on a specimen using different lattice element types

The load-midspan deflection curves of the lattice element types are shown in Fig. 8 (a)~(b),
respectively. The displacement given in the figure is measured at the load application point. Three curves
correspond to the three types in each size group, which differ only by the random distribution of the
equal amount of aggregates.
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Fig. 8 Compare P-4 of analyzed lattice types to experiment specimen

5. Conclusion

This paper discussed 2D lattice model for fracture simulations. In this literature, models with various
types of elements can be found. The equations for the network models with these different elements are
all discretizations of different continuum equations. For fracture the results that are obtained strongly
depend on the chosen element type. Beam elements with three degrees of freedom per node give the
best agreement with experimentally obtained crack patterns. In simulations with different pk(aggregate
size) is 0.75, realistic crack patterns are also obtained. However the crack patterns that are simulated are
not complicated. Bending tests are simulated in a straight crack surrounded by microcracks develops. In
Fig.7 of this paper, it is shown that if the crack patten is more complex, and the cracks are curved,
elements with three degrees of freedom are necessary. The shape or orientation of the beams in a lattice
also influences the simulated crack pattemns, with the cracks tending to follow the mesh lines.
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