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ABSTRACT

This paper established the dynamic model of a flexible Timoshenko beam with geometrical nonlinearities
subject to large overall motions by using the finite element method. The equations of motion are derived by using
Hamilton principle based on expressing the kinetic and potential energies of the flexible beam in terms of
generalized coordinates. The nonlinear constraint equations are adjoined to the system equations of motion by
using Lagrange multipliers.

1. Introduction

The dynamic analysis of flexible body has been developed in these years. It provides more exact and credible
results which are needed in design and control of dynamic system. The most popular method for studying this
subject is by using finite element method. Flexible beam elements are generally modelled according to the
classical Euler-Bernoulli theory. However, for the purpose of higher speed and better system performance, the
investigation of flexibility due to the bending and torsion effects of the manipulator is needed. Therefore a more
accurate beam element model is developed here by the Timoshenko model of the beam. (@

Two sets of coordinates are defined: one is reference coordinates which describe large rigid-body translation
and large angular rotations of the body reference, and the other is elastic coordinates which characterize elastic
deformations of the body, i.e. relative translation and angular displacement of infinitesimal volumes at nodal
points on the body. ® The location and angular orientation of every infinitesimal volumes in each element can be
approximated in terms of its elastic coordinates and the assumed shape functions by the finite element approach.
Based on Timoshenko beam theory with the inclusion of the geometrical nonlinearity and the shear deformation,
energy equation of each element are derived by the assumed shape functions. And then the elements of each body
are assembled using the standard finite element procedures. Algebraic equations prescribing constraints between
various bodies are formulated and coupled to.the equations of motion by the Lagrange multiplier technique. The
resulting equations of motion are usually nonlinear and highly coupled in the inertia terms due to the presence of

Coriolis and centrifugal effects as well as inertia due to the rotation of the beam. )

« B5Y - FIHARL NATHY AR
» JEY - F22FFYSR ATHRE 2s

- 17 -



2.Flexible Body Description

2.1. Displacement and deformation analysis
Consider a body in an orthonormal basis /=(i), #,, ;). Two coordinates of this body will be defined: a
before-deformed coordinates, and an after-deformed coordinates, as depicted in fig. 1.

Before-deformed After-deformed

Fig. 1 The before-deformed and after-deformed configurations of a body
Let point 0 and O be material points in the body, and the position vector of them be x and X in the
before-deformed and the after-deformed coordinates respectively, which are

x=x(x,%,%); X=X(X,X,,X,). (1)

Increments in position vector are denoted dx and dX respectively. A convenient choice for the material
coordinates, Lagrangian representation, will be used here. And then X, dX can be expressed as

Xy X, A,
)_{::,X(x); dX=|X,, X,, X, dx. 2)
Xy Xy Xy,

where Xi,j =0X, /6xj (i,7=1, 2,3).
The lengths of increments of the lines in the before-deformed and the after-deformed coordinates are

ds* =dxdy; dS*=dX"dX . ©)

According to the description of Green-Lagrange Strain tensor, the change in length of the increment of the
position vector is

1 1
AS =—(dS* -ds*)==(dX"dX - dx"dx). 4
a5* - as') =2 axax - ) @
The displacement relating two coordinates is defined as g [u, u, u, ]T , and easily to find # = X — x . Obviously,

dX =(u'+I)dx, O)
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where u'=|u,, u,, u,,|. Introduce Eq. (5) into Eq. (4), AS will be

Uy, Uy Uy

AS =dx' (g +&,)dx =dx" edx, ©)

where £ and &, denote the linear and nonlinear partof ¢ as g = -;—(g Tru ') and g = %(g T u ').

After arrangement the relationship between strain and displacement will be found as
£=Du. )

2.2. Motion description of the flexible body
Assume the elastic deformation of point P on an after-deformed body is
u,=Ng,, (®)
where N is an appropriate shape function, and g, is a set of time dependent elastic coordinates of the body.
As shown in Fig. 2, let X represent translation tensor and R a rotation tensor of the orientation angle & of the
body attached frame (x',y° s z') with respect to the inertial frame 7=(i,, i,, i;). Therefore, a set of

time-dependent reference coordinates ¢, associated with the above rigid body motion is introduced to set up the

q X
q =[‘ }; q, =[ } (9-2), (9-b)
q, [

total time-dependent coordinates.

Before-deformed
After-deformed

i
Fig. 2 The coordinate system
Let d and u, be the deformed and undeformed vectors that define the location of a point P with respect to
the body (x‘, y', z') coordinate system. Then ¥, is elastic deformation at point P, such that,
d=u,+u, =u,+Ng,. (10)
The global location of point P with respect to the inertial frame is
r=X+Rd=X+Ru +RNq . (11)
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2.3. Energy equations
The velocity vector comes from Eq. (11) by taking the differentiation respect to time,

f=X+Rd+Rd=X+Rd+RNy,, (12)
and the second term can be written in the form of R,d '0 by the chainrule R = &99 . Therefore,
E=X+HO+RNG,, (13)
where H = R,d . In partitioned form, the Eq. (12)is f=[I H RN][,XT 9" q ]T .
If the body has 7 elements, the kinetic energy of the body with the elemental volume }¢ and the elemental

density p° is
1 T o gire
KE=ZELp‘I_’[_dV . (14)
e=i
The substitution of Eq. (13) into Eq. (14) and the denotation ¢§ = [ X" 6 q," ]T result into the kinetic energy
expression as
1, .
KE==4"M(q)d, 1s)
where
- 1 H RN |l mu(@) my(q)
M@)=2-[r| & HH AR =Dm@ m@ m@| 9
(RN) (RN)'H N'N ma(@) m,(9) m(g)
Furthermore, by substitution of Eq. (9-a), the kinetic energy expression in Eq. (15) becomes
. 7 .
g | |m. (@) my(@]| 4
KE=12 A d Eal amn
204, | |me@ mp(D] 4,
The strain energy expression is
2 1
SE=Z—£L£’E§dV‘. (18)
e=]
The substitution of Eq. (7) and (8) into Eq. (18) yeilds ,
1
5 q,'Kq, (19)

1
SE:E_QJT (I_{l +I_<nl)£/ =
K,

where the total stiffness matrix K is the sum of linear stiffness and nonlinear stiffness K ; accounted for

the large displacements.

2.4 The system equation of motion

According to Hamilton principle, (ONY

5[ (sE-KEYit= [ oWt [, p'sqar]’ 20)

]
where [ L p'Sqd V‘] " is the virtual work done by the externally applied momenta and it vanish at the initial
£ °q A

and final times. The virtual work done by the externally applied loads i over the elemental surface gS° and

body force b is
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= ["{[676qdv + [ i"6qds Jat=-[ 6@ (q)t = [ Q6qat, 1)
where @ ( q ) is the total potential of the applied loads and Q the generalized external force.
The Eq. (20) is rewritten as

5[’(5E—KE+Q)dt =0 22)

6[( q—%q Kq,+q Q+cDT( )A}h=0, (23)

where the last term is caused by the constrained forces which is described by constraint conditions @ ( q ) =0

a1 ., . . od” _
5 {3—2(52 M (2)2)52“‘4 (2)490-Ka 00, +Qoq+= ~dquai=0  C¥
After some substitutions,

f,/(M(z)i”-‘zf)‘?id'*f{Q M(q )‘1+§§(;QTM(£)2)+QT(Q)&}%&, (25)

where for arbitrary 04 states that
u(i+fy =eM(Da-m (FiM(@ife @i o

The second and third term, denoted by the force vector F, contain the Coriolis components and the Gyroscopic

and Lagrange multiplier vector A .
Performing the variation operation of Eq. (23),

force since they include the quadratic form of the velocity. Finally, the equation of motion can be rewritten as
. -
sl HE AN R R R bE
. T —_—
m, m]\3] o & o 8] e,

3. Two Dimensional Timoshenko Beam Element

As shown in Fig. 3, the relationship between the physical coordinate x and the natural § with its Jacobian J in
the longitudinal direction of a 2D Timoshenko beam element are

=X y=%_. (28)
d 1 dé
",
\W) Uy
0, 150% ith element sz

YA ee— e —————— 7t,u2
) 9

2
< X > 1
< >
0 £ > 1

Fig. 3 The element configuration of a 2D Timoshenko beam element
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The deformation of any point in the neutral axis of the ith element is
T
u=[u, u, 6,] =Ng’ (29)
where the notation (+)° is the quantity related to the ith element and g,° is the element coordinate which
definedas g =[u, w, 6 u, w, 6, ] - The shape function N is given as
1-¢ 0 0 &£ 0 0

=0 1-£ 0 0 ¢ 0. (30)
0 0 1-£ 0 0 &

R 1=

N' =

|
w

As depicted in Fig. 4, in the planar case the relationship between the reference configuration [x y G]T and
final configuration [x' y & ]T is

* *

x cos@ -sin@ Of{|=x X ~sin@ -cos@ O
yb=|sin@ cos@ O3y +=Riy'}; R,=| cos§ -sind 0 (31-a), (31-b)
0 0 0 1|6 0 0 0o 0

Fig. 4 The relationship between reference and final configuration
From Eq. (13) and (31-b),

H=R,d=R,(u,+Ng,), 32)
T T
where u, = [uox U oy] defines the undeformed position of the element and assume ¢, = [x,. x j] , then
1-& &~

u,= =Ng,. 33

In the condition of Fig. 4, the total strain energy of the beam is

1 el .
SE=— [ (o, +0,6,+0,7,)aV = 3 [.(Ee} +kGyl)av (34)
And in the figure also be shown that

u, (x,y)=u(x)-y0(x); (35)
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u,(x,y)=w(xy)=w(x), (36)

where y_ and u, are due to axial load and shearing. B(x) is the rotation due to the pure bending.

-—X

According to the Eq. (7), the relationship between strain and stress,

: _(91_ 69)+l (@_ %)2+(@_QJ 1

oY) 2 Ta) o & G7
ow

y,,—(—0+5;) (—é;—y )( -6). (38)

where &, consists of £, and &, which caused by axial load and shearing, respectively. The strain energy now
is
——L Eg’dV* +— L EgldV®+= L EGy2dv* . (39)

Here only take the linear case into account, therefore

2 2 2
SE =lEAj:(@) dx+lEI£(ég) dx+lkGA£(@-o) dx
2 ax 2 4 ax 2 ox

(40)
1
= ngr (KAxml + KBaldlng — Shear )g[
After some arrangements,
1 1
K i = -Z-EA f_j;]—vl,gryl,;‘]dé;
|
Kumang = B [ =5 N, N, JdE; )
"1
Shm"kGAE( N N) (7&’2,;"&’3)‘]"5
Combining these three terms, the stiffness matrix can be got as follow.
4 5 o A 4
1 I
0 kGA 1 kGA 0 _kG4 1 kG4
EI 2 EI EI 2 EI
o LkGA P'kGA . _1kGA kG4 _,
K=§-I— 2 EI 3 EI 2 EI 6 EI (42)
Fi_4 0 0 4 0 0
I I
0 _kG4 1 kG4 0 kGA _1kG4
Er 2 EI EI 2 EI
IkGA EkGA_1 0 _1kGA ﬁkGA+1
2 El 6 EI 2 EI 3 EI ]




Introducing Eq. (32), (39) into Eq. (27) yields the equation of motion in the global configuration.
T
It should be noticed here, in the generalized force O = [Q,T er] , the time field of (J, is from inertial

time #, to finaltime 7, andof ), isfrom f; to %.And
{2 }local B j:ﬂi’fg, et h[]yfg, ]:=¢h " -(p Ny g+ Q[N2Tgf ]¢=¢g ¥ M[N3Tgf ]c=;\, @

where [ is the longitudinal force per unit length, /% the longitudinal point force, p the transverse force per
unit length, () the transverse point force, A/ the point moment. And, &,, &,, &, are the acted position of
P, Q and M , respectively.

In the process of conversion of the coordinates, Q ¢ in the global configuration will be

{Qf}gioble = B{_Q_f}local ’ (44)

RO

where R here extendstobe R =
0 R

:l . O, will not change because it is not related to the nodal point,
6x6 :
but is applied at the mass center of the element.

4. Conclusion

This paper derived the finite element equation of motion for general flexible Timoshenko beam. It provided an
alternative way to formulate the Coriolis and centrifugal effects, as the other inertia effects due to the motion. In
the computation of stiffness matrix, the nonlinearities are omitted for simplifying the problem and will be added
in future for more in-depth study. In addition, a set of numerical algorism will be developed to evaluate the
efficiency of the proposed formulation. Further, the analysis for 3D beam will be extended.
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