Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • 발행 : 2004.03.01

초록

In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

키워드